350 rub
Journal Technologies of Living Systems №4 for 2022 г.
Article in number:
Cancer-associated fibroblasts in prostate cancer
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202204-01
UDC: 616-091, 616-006.6, 616.65
Authors:

N.A. Oleynikova1, N.B. Babunashvili2, O.Yu. Nesterova3, N.V. Danilova4, O.A. Kharlova5, D.A. Okhobotov6, P.G. Malkov7, A.A. Kamalov8

1,3–8 Medical Research and Educational Center, Lomonosov Moscow State University (Moscow, Russia)

2,8 Lomonosov Moscow State University (Moscow, Russia)

Abstract:

Prostate cancer (PCa) remains the most common cancer type in men. In recent years, the researchers have focused on finding sufficient biomarkers of the tumor microenvironment (TME) due to its widely recognized capability to initiate and promote carcinogenesis.

The TME is mainly represented by cancer-associated fibroblasts (CAFs) – a heterogenous group of mesenchymal cells that modulate metastasis and further invasion of a tumor by rearranging and expanding extracellular matrix, as well as by mediating the interaction between other stromal cells and cancer cells. Lately, their exceptional role in disease progression has been reported. CAFs stimulate the angiogenesis inside the tumor, induce production of pro-inflammatory cytokines by the tumor cells. They are also responsible for development of the castrate-resistant prostate cancer (CRPC).

CAFs are now considered an important prognostic factor in terms of tumorigenesis. CAFs phenotype is known to resemble this of epithelial cells which have gone through epithelial-mesenchymal transition. Moreover, as CAFs expression pattern may vary in different organs, it’s crucial to study their properties in the context of PCa separately. Identifying CAFs on the early stages of disease, including the stage of prostatic intraepithelial neoplasia (PIN), not only allows the close dynamic monitoring of patients, but also the selection of targeted drugs that are capable of blocking the proliferation of TME, inhibiting thus the further progression of carcinogenesis. Therefore, identifying specific markers for CAFs shall become the key to predicting the outcome of the disease, and selecting the drugs.

In this work, we are analyzing recent publications on the topic and are trying to identify CAFs biomarkers that can be considered the most sufficient for diagnosing PCa and determining its stage. The combinations of markers are also discussed since they may act as even more sensitive indicators. As a result, the list of CAFs markers has been broadened, new promising markers have been described. What is more, the significance of several classical molecules has been reevaluated. The described molecules shall be considered not only prospective markers for PCa diagnostics and disease staging, but also targets for selective drug therapy.

Pages: 5-23
For citation

Oleynikova N.A., Babunashvili N.B., Nesterova O.Yu., Danilova N.V., Kharlova O.A., Okhobotov D.A., Malkov P.G., Kamalov A.A. Cancer-associated fibroblasts in prostate cancer. Technologies of Living Systems. 2022. V. 19. № 4. Р. 5-23. DOI: https://doi.org/ 10.18127/j20700997-202204-01 (In Russian)

References
  1. Cancer Today. https://gco.iarc.fr/today/home. [Electronic resource].
  2. Jeffers A., Sochat V., Kattan M.W., Yu C., Melcon E., Yamoah K., Rebbeck T.R., Whittemore A.S. Predicting Prostate Cancer Recurrence After Radical Prostatectomy. Prostate. John Wiley and Sons Inc. 2017. V. 77. № 3. P. 291–298.
  3. Shah R.B., Zhou M. Recent advances in prostate cancer pathology: Gleason grading and beyond. Pathology International. Blackwell Publishing. 2016. V. 66. № 5. P. 260–272.
  4. Hsieh C.L., Liu C.M., Chen H.A., Yang S.T., Shigemura K., Kitagawa K., Yamamichi F., Fujisawa M., Liu Y.R., Lee W.H., Chen K.C., Shen C.N., Lin C.C., Chung L.W.K., Sung S.Y. Reactive oxygen species-mediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression. Scientific Reports. Nature Publishing Group. 2017. V. 7. № 1. P. 9065.
  5. Yu S., Jiang Y., Wan F., Wu J., Gao Z., Liu D. Immortalized Cancer-associated Fibroblasts Promote Prostate Cancer Carcinogenesis, Proliferation and Invasion. Anticancer Research. 2017. V. 37. № 8. P. 4311–4318.
  6. Tlsty T.D., Coussens L.M. Tumor stroma and regulation of cancer development. Annual Review of Pathology. Annual Reviews Inc. 2006. V. 1. P. 119–150.
  7. Erez N., Truitt M., Olson P., Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-κB-Dependent Manner. Cancer Cell. Cell Press, 2010. V. 17. № 2. P. 135–147.
  8. Cheteh E.H., Augsten M., Rundqvist H., Bianchi J., Sarne V., Egevad L., Bykov V.J., Östman A., Wiman K.G. Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death Dis. 2017. V. 8. № 6. P. e2848.
  9. Shahriari K., Shen F., Worrede-Mahdi A., Liu Q., Gong Y., Garcia F.U., Fatatis A. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene. Nature Publishing Group. 2017. V. 36. № 20. P. 2846–2856.
  10. Gandellini P., Andriani F., Merlino G., D’Aiuto F., Roz L., Callari M. Complexity in the tumour microenvironment: Cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Seminars in Cancer Biology. Academic Press. 2015. V. 35. P. 96–106.
  11. San Francisco I.F., DeWolf W.C., Pefhl D.M., Olumi A.F. Expression of transforming growth factor-beta 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. International Journal of Cancer. 2004. V. 112. № 2. P. 213–218.
  12. Webber J.P., Spary L.K., Sanders A.J., Chowdhury R., Jiang W.G., Steadman R., Wymant J., Jones A.T., Kynaston H., Mason M.D., Tabi Z., Clayton A. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. Nature Publishing Group. 2015. V. 34, № 3. P. 319–333.
  13. Sampson N., Brunner E., Weber A., Puhr M., Schäfer G., Szyndralewiez C., Klocker H. Inhibition of Nox4-dependent ROS signaling attenuates prostate fibroblast activation and abrogates stromal-mediated protumorigenic interactions. International Journal of Cancer. Wiley-Liss Inc. 2018. V. 143. № 2. P. 383–395.
  14. Ippolito L., Morandi A., Taddei M.L., Parri M., Comito G., Iscaro A., Raspollini M.R., Magherini F., Rapizzi E., Masquelier J., Muccioli G.G.,
    Sonveaux P., Chiarugi P., Giannoni E. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene. Nature Publishing Group. 2019. V. 38. № 27. P. 5339–5355.
  15. Josson S., Gururajan M., Sung S.Y., Hu P., Shao C., Zhau H.E., Liu C., Lichterman J., Duan P., Li Q., Rogatko A., Posadas E.M., Haga C.L., Chung L.W.K. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene. Nature Publishing Group. 2015. V. 34. № 21. P. 2690–2699.
  16. Grunberg N. et al. Cancer-Associated Fibroblasts Promote Aggressive Gastric Cancer Phenotypes via Heat Shock Factor 1–Mediated Secretion of Extracellular Vesicles. Cancer Research. 2021. V. 81. № 7. P. 1639–1653.
  17. Elwakeel E., Weigert A. Breast Cancer CAFs: Spectrum of Phenotypes and Promising Targeting Avenues. International Journal of Molecular Sciences. 2021. V. 22. № 21. P. 11636.
  18. Ohashi K., Li T.-S., Miura S., Hasegawa Y., Miura K. Biological Differences Between Ovarian Cancer-associated Fibroblasts and Contralateral Normal Ovary-derived Mesenchymal Stem Cells. Anticancer Research. 2022. V. 42. № 4. P. 1729–1737.
  19. Sun D.Y., Wu J.Q., He Z.H., He M.F., Sun H. bin. Cancer-associated fibroblast regulate proliferation and migration of prostate cancer cells through TGF-β signaling pathway. Life Sciences. Elsevier Inc. 2019. V. 235. P. 116791.
  20. Feng D., Shi X., Xiong Q., Zhang F., Li D., Wei W., Yang L. A Ferroptosis-Related Gene Prognostic Index Associated With Biochemical Recurrence and Radiation Resistance for Patients With Prostate Cancer Undergoing Radical Radiotherapy. Frontiers in Cell and Developmental Biology. 2022. V. 10. P. 803766.
  21. Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Frontiers in Oncology. Frontiers Research Foundation. 2014. V. 4. MAR.
  22. Tuxhorn J.A., Ayala G.E., Smith M.J., Smith V.C., Dang T.D., Rowley D.R., E A P.G., S Baylor V.C. Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling 1. P. 2912–2923.
  23. Kaur S.P., Verma A., Lee H.K., Barnett L.M., Somanath P.R., Cummings B.S. Inhibition of glypican-1 expression induces an activated fibroblast phenotype in a human bone marrow-derived stromal cell-line. Scientific Reports. Nature Research, 2021. V. 11. № 1. P. 9262.
  24. Madar S., Goldstein I., Rotter V. “Cancer associated fibroblasts” – more than meets the eye. Trends in Molecular Medicine. 2013. V. 19.
    № 8. P. 447–453.
  25. Mbeunkui F., Johann D.J. Cancer and the tumor microenvironment: A review of an essential relationship. Cancer Chemotherapy and Pharmacology. 2009. V. 63. № 4. P. 571–582.
  26. Gopal S., Veracini L., Grall D., Butori C., Schaub S., Audebert S., Camoin L., Baudelet E., Adwanska A., Beghelli-De La Forest Divonne S., Violette S.M., Weinreb P.H., Rekima S., Ilie M., Sudaka A., Hofman P., van Obberghen-Schilling E. Fibronectin-guided migration of carcinoma collectives. Nature Communications. Nature Publishing Group, 2017. V. 8. P. 14105.
  27. Erdogan B., Ao M., White L.M., Means A.L., Brewer B.M., Yang L., Washington M.K., Shi C., Franco O.E., Weaver A.M., Hayward S.W., Li D., Webb D.J. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. Journal of Cell Biology. Rockefeller University Press, 2017. V. 216. № 11. P. 3799–3816.
  28. Kahounová Z., Kurfürstová D., Bouchal J., Kharaishvili G., Navrátil J., Remšík J., Šimečková Š., Študent V., Kozubík A., Souček K. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition. Cytometry Part A. Wiley-Liss Inc., 2018. V. 93. № 9. P. 941–951.
  29. Qin H., Yang Y., Jiang B., Pan C., Chen W., Diao W., Ding M., Cao W., Zhang Z., Chen M., Gao J., Zhao X., Qiu X., Guo H. SOX9 in prostate cancer is upregulated by cancer-associated fibroblasts to promote tumor progression through HGF/c-Met-FRA1 signaling. FEBS Journal. John Wiley and Sons Inc, 2021. V. 288. № 18. P. 5406–5429.
  30. Gerashchenko G. v, Grygoruk O. v, Kononenko O.A., Gryzodub O.P., Stakhovsky E.O., Kashuba V.I. Expression pattern of genes associated with tumor microenvironment in prostate cancer. Experimental Oncology. 2018. V. 40. P. 315–322.
  31. Rinella L., Pizzo B., Frairia R., Delsedime L., Calleris G., Gontero P., Zunino V., Fortunati N., Arvat E., Catalano M.G. Modulating tumor reactive stroma by extracorporeal shock waves to control prostate cancer progression. Prostate. John Wiley and Sons Inc. 2020. V. 80. № 13. P. 1087–1096.
  32. Ni W.D., Yang Z.T., Cui C.A., Cui Y., Fang L.Y., Xuan Y.H. Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer. Biochemical and Biophysical Research Communications. Elsevier B.V. 2017. V. 486. № 3. P. 607–612.
  33. Coleman D.T., Gray A.L., Stephens C.A., Scott M.L., Cardelli J.A. Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation. Oncotarget. 2016. V. 7. № 22. P. 32200–32209.
  34. Ortiz-Otero N., Marshall J.R., Glenn A., Matloubieh J., Joseph J., Sahasrabudhe D.M., Messing E.M., King M.R. TRAIL-coated leukocytes to kill circulating tumor cells in the flowing blood from prostate cancer patients. BMC Cancer. BioMed Central Ltd. 2021. V. 21. № 1. P. 898.
  35. Blom S., Erickson A., Östman A., Rannikko A., Mirtti T., Kallioniemi O., Pellinen T. Fibroblast as a critical stromal cell type determining prognosis in prostate cancer. Prostate. John Wiley and Sons Inc. 2019. V. 79. № 13. P. 1505–1513.
  36. Zhang T., Chen X., Sun L., Guo X., Cai T., Wang J., Zeng Y., Ma J., Ding X., Xie Z., Niu L., Zhang M., Tao N., Yang F. Proteomics reveals the function reverse of MPSSS-treated prostate cancer-associated fibroblasts to suppress PC-3 cell viability via the FoxO pathway. Cancer Medicine. Blackwell Publishing Ltd. 2021. V. 10. № 7. P. 2509–2522.
  37. Zhang Y., Zhao J., Ding M., Su Y., Cui D., Jiang C., Zhao S., Jia G., Wang X., Ruan Y., Jing Y., Xia S., Han B. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. Journal of Experimental and Clinical Cancer Research. BioMed Central Ltd. 2020. V. 39. № 1. P. 282.
  38. Shan G., Gu J., Zhou D., Li L., Cheng W., Wang Y., Tang T., Wang X. Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Experimental and Molecular Medicine. Springer Nature, 2020. V. 52. № 11. P. 1809–1822.
  39. Wu Z., Shi J., Lai C., Li K., Li K., Li Z., Tang Z., Liu C., Xu K. Clinicopathological significance and prognostic value of cancer-associated fibroblasts in prostate cancer patients. Urologic Oncology: Seminars and Original Investigations. Elsevier Inc. 2021. V. 39. № 7.
    P. 433.e17-433.e23.
  40. Zhang Z. et al. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell. Cell Press, 2020. V. 38. № 2. P. 279-296.e9.
  41. Chen L., Wang Y.Y., Li D., Wang C., Wang S.Y., Shao S.H., Zhu Z.Y., Zhao J., Zhang Y., Ruan Y., Han B.M., Xia S.J., Jiang C.Y., Zhao F.J. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Letters. Elsevier Ireland Ltd. 2021. V. 503. P. 138–150.
  42. Pidsley R. et al. Enduring epigenetic landmarks define the cancer microenvironment. Genome Research. Cold Spring Harbor Laboratory Press. 2018. V. 28. № 5. P. 625–638.
  43. Hesterberg A.B., Rios B.L., Wolf E.M., Tubbs C., Wong H.Y., Schaffer K.R., Lotan T.L., Giannico G.A., Gordetsky J.B., Hurley P.J. A distinct repertoire of cancer-associated fibroblasts is enriched in cribriform prostate cancer. Journal of Pathology: Clinical Research. Blackwell Publishing Ltd. 2021. V. 7. № 3. P. 271–286.
  44. Orr B., Riddick A.C.P., Stewart G.D., Anderson R.A., Franco O.E., Hayward S.W., Thomson A.A. Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate. Oncogene. 2012.
    V. 31. № 9. P. 1130–1142.
  45. Hou L., Chen D., Hao L., Tian C., Yan Y., Zhu L., Zhang H., Zhang Y., Zhang Z. Transformable nanoparticles triggered by cancer-associated fibroblasts for improving drug permeability and efficacy in desmoplastic tumors. Nanoscale. Royal Society of Chemistry, 2019. V. 11. № 42. P. 20030–20044.
  46. Barcellos-de-Souza P., Comito G., Pons-Segura C., Taddei M.L., Gori V., Becherucci V., Bambi F., Margheri F., Laurenzana A., del Rosso M., Chiarugi P. Mesenchymal Stem Cells are Recruited and Activated into Carcinoma-Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-β1. Stem Cells. Wiley-Blackwell. 2016. V. 34. № 10. P. 2536–2547.
  47. Lee M.-J., Kim D. The Correlation between YAP and RhoA Expression in Prostate and Ovarian Tumor Stroma. Asian Pacific Journal of Cancer Prevention. 2022. V. 23. № 1. P. 281–285.
  48. Shen T., Li Y., Zhu S., Yu J., Zhang B., Chen X., Zhang Z., Ma Y., Niu Y., Shang Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. Journal of Experimental and Clinical Cancer Research. BioMed Central Ltd. 2020. V. 39. № 1. P. 36.
  49. Brasil da Costa F.H., Lewis M.S., Truong A., Carson D.D., Farach-Carson M.C. SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models. PLoS ONE. Public Library of Science. 2020. V. 15. № 5. P. e0230354.
  50. Haldar S., Mishra R., Billet S., Thiruvalluvan M., Placencio-Hickok V.R., Madhav A., Duong F., Angara B., Agarwal P., Tighiouart M., Posadas E.M., Bhowmick N.A. Cancer epithelia-derived mitochondrial DNA is a targetable initiator of a paracrine signaling loop that confers taxane resistance. Proceedings of the National Academy of Sciences of the United States of America. 2020. V. 117. № 15.
    P. 8515–8523.
  51. Eiro N., Fernandez-Gomez J., Sacristán R., Fernandez-Garcia B., Lobo B., Gonzalez-Suarez J., Quintas A., Escaf S., Vizoso F.J. Stromal factors involved in human prostate cancer development, progression and castration resistance. Journal of Cancer Research and Clinical Oncology. Springer Verlag, 2017. V. 143. № 2. P. 351–359.
  52. Ortiz-Otero N., Clinch A.B., Hope J., Wang W., Reinhart-King C.A., King M.R. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget. 2020. V. 11. № 12. P. 1037–1050.
  53. Yang Z., Peng Y.C., Gopalan A., Gao D., Chen Y., Joyner A.L. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. DMM Disease Models and Mechanisms. Company of Biologists Ltd. 2017. V. 10. № 1. P. 39–52.
  54. Kessel K., Seifert R., Weckesser M., Boegemann M., Huss S., Kratochwil C., Haberkorn U., Giesel F., Rahbar K. Prostate-specific membrane antigen and fibroblast activation protein distribution in prostate cancer: preliminary data on immunohistochemistry and PET imaging. Annals of Nuclear Medicine. Springer Japan. 2022. V. 36. № 3. P. 293–301.
  55. Hintz H.M., Gallant J.P., vander Griend D.J., Coleman I.M., Nelson P.S., LeBeau A.M. Imaging Fibroblast Activation Protein Alpha Improves Diagnosis of Metastatic Prostate Cancer with Positron Emission Tomography. Clinical Cancer Research. American Association for Cancer Research Inc. 2020. V. 26. № 18. P. 4882–4891.
  56. Wikström P., Stattin P., Franck-Lissbrant I., Damber J.-E., Bergh A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998. V. 37. № 1. P. 19–29.
  57. Ivanovic V., Melman A., Davis-Joseph B., Valcic M., Geliebter J. Elevated plasma levels of TGF-β1 in patients with invasive prostate cancer. Nature Medicine. 1995. V. 1. № 4. P. 282–284.
  58. Hammarsten P., Scherdin T.D., Hägglöf C., Andersson P., Wikström P., Stattin P., Egevad L.R., Granfors T., Bergh A. High caveolin-1 expression in tumor stroma is associated with a favourable outcome in prostate cancer patients managed by watchful waiting. PLoS ONE. Public Library of Science. 2016. V. 11. № 10. P. e0164016.
  59. Ayala G., Morello M., Frolov A., You S., Li R., Rosati F., Bartolucci G., Danza G., Adam R.M., Thompson T.C., Lisanti M.P., Freeman M.R.,
    di Vizio D. Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. Journal of Pathology. John Wiley and Sons Ltd. 2013. V. 231. № 1. P. 77–87.
  60. Gevaert T., van Eycke Y.R., vanden Broeck T., van Poppel H., Salmon I., Rorive S., Claessens F., de Ridder D., Decaestecker C., Joniau S. Comparing the expression profiles of steroid hormone receptors and stromal cell markers in prostate cancer at different Gleason scores. Scientific Reports. Nature Publishing Group, 2018. V. 8. № 1. P. 14326.
  61. Yang C., He B., Dai W., Zhang H., Zheng Y., Wang X., Zhang Q. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharmaceutica Sinica B. Chinese Academy of Medical Sciences, 2021. V. 11. № 4. P. 961–977.
  62. Vickman R.E., Broman M.M., Lanman N.A., Franco O.E., Sudyanti P.A.G., Ni Y., Ji Y., Helfand B.T., Petkewicz J., Paterakos M.C., Crawford S.E., Ratliff T.L., Hayward S.W. Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. John Wiley and Sons Inc., 2020. V. 80. № 2. P. 173–185.
  63. Nguyen E.V., Pereira B.A., Lawrence M.G., Ma X., Rebello R.J., Chan H., Niranjan B., Wu Y., Ellem S., Guan X., Wu J., Skhinas J.N., Cox T.R., Risbridger G.P., Taylor R.A., Lister N.L., Daly R.J. Proteomic profiling of human prostate cancer-associated fibroblasts (CAF) reveals LOXL2-dependent regulation of the tumor microenvironment. Molecular and Cellular Proteomics. American Society for Biochemistry and Molecular Biology Inc. 2019. V. 18. № 7. P. 1410–1427.
  64. Kato M., Placencio-Hickok V.R., Madhav A., Haldar S., Tripathi M., Billet S., Mishra R., Smith B., Rohena-Rivera K., Agarwal P., Duong F., Angara B., Hickok D., Liu Z., Bhowmick N.A. Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene. Nature Publishing Group. 2019. V. 38. № 5. P. 716–730.
  65. Joesting M.S., Perrin S., Elenbaas B., Fawell S.E., Rubin J.S., Franco O.E., Hayward S.W., Cunha G.R., Marker P.C. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Research. 2005. V. 65. № 22. P. 10423–10430.
  66. Rochette A., Boufaied N., Scarlata E., Hamel L., Brimo F., Whitaker H.C., Ramos-Montoya A., Neal D.E., Dragomir A., Aprikian A., Chevalier S., Thomson A.A. Asporin is a stromally expressed marker associated with prostate cancer progression. British Journal of Cancer. Nature Publishing Group, 2017. V. 116. № 6. P. 775–784.
  67. Cioni B., Zwart W., Bergman A.M. Androgen Receptor Moonlighting in the Prostate Cancer 4 Microenvironment 5 6 7. 2018. V. 25. № 6.
    P. R331–349.
  68. Karantanos T., Corn P.G., Thompson T.C. Prostate cancer progression after androgen deprivation therapy: Mechanisms of castrate resistance and novel therapeutic approaches. Oncogene. 2013. V. 32. № 49. P. 5501–5511.
  69. Cioni B., Nevedomskaya E., Melis M.H.M., van Burgsteden J., Stelloo S., Hodel E., Spinozzi D., de Jong J., van der Poel H., de Boer J.P., Wessels L.F.A., Zwart W., Bergman A.M. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Molecular Oncology. John Wiley and Sons Ltd. 2018. V. 12. № 8. P. 1308–1323.
  70. di Donato M., Zamagni A., Galasso G., di Zazzo E., Giovannelli P., Barone M.V., Zanoni M., Gunelli R., Costantini M., Auricchio F., Migliaccio A., Tesei A., Castoria G. The androgen receptor/filamin A complex as a target in prostate cancer microenvironment. Cell Death and Disease. Springer Nature. 2021. V. 12. № 1. P. 272.
  71. Dzaparidze G., Anion E., Laan M., Minajeva A. The decline of FANCM immunohistochemical expression in prostate cancer stroma correlates with the grade group. Pathology International. Blackwell Publishing. 2020. V. 70. № 8. P. 542–550.
  72. Tian Y., Choi C.H., Li Q.K., Rahmatpanah F.B., Chen X., Kim S.R., Veltri R., Chia D., Zhang Z., Mercola D., Zhang H. Overexpression of periostin in stroma positively associated with aggressive prostate cancer. PLoS ONE. Public Library of Science. 2015. V. 10. № 3.
    P. e0130333.
  73. Chiquet-Ehrismann R., Chiquet M. Tenascins: Regulation and putative functions during pathological stress. Journal of Pathology. 2003. V. 200. № 4. P. 488–499.
  74. Orend G., Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Letters. Elsevier Ireland Ltd. 2006. V. 244. № 2.
    P. 143–163.
  75. Yang Z.-T., Yeo S.-Y., Yin Y.-X., Lin Z.-H., Lee H.-M., Xuan Y.-H., Cui Y., Kim S.-H. Tenascin-C, a Prognostic Determinant of Esophageal Squamous Cell Carcinoma. PLOS ONE. 2016. V. 11. № 1. P. e0145807.
  76. Xu Y., Ma J., Zheng Q., Wang Y., Hu M., Ma F., Qin Z., Lei N., Tao N. MPSSS impairs the immunosuppressive function of cancer-associated fibroblasts via the TLR4-NF-κB pathway. Bioscience Reports. Portland Press Ltd, 2019. V. 39. № 5. P. BSR20182171.
  77. Dzhajn M., Nekrasova L.A., Meshcheryakov O.A., Shichanina A.A., Samokhodskaya L.M. Zhidkostnaya biopsiya kak instrument kontrolya rosta i metastazirovaniya opukholi. Tekhnologii zhivykh system. 2021. T. 18. № 4. S. 21–33. (in Russian).
  78. Penet M.-F., Kakkad S., Pathak A.P., Krishnamachary B., Mironchik Y., Raman V., Solaiyappan M., Bhujwalla Z.M. Structure and Function of a Prostate Cancer Dissemination Permissive Extracellular Matrix. Clin. Cancer Res. 2017. V. 23. № 9. P. 2245–2254.
Date of receipt: 11.08.2022
Approved after review: 11.08.2022
Accepted for publication: 25.10.2022