O.A. Lopatina1, О.V. Baklanova2, E.A. Gushchina3, I.A. Suetina4, H.I. Isaeva5, T.N. Pritchina6, M.V. Mezentseva7, M.V. Bidevkina8, F.I. Dalidchik9, A.I. Kulak10, S.A. Kovalevskiy11
1–7 FSBI N.F. Gamaleya National Research Center for Epidemiology and Microbiology (Moscow, Russia)
8 FBIS Scientific Research Disinfectology Institute (Moscow, Russia)
9,11 Semenov Institute of Chemical Physics RAS (Moscow, Russia)
10 Institute of General and Inorganic Chemistry (Minsk, Belarus)
The cytotoxic effect of heteropolyacids (HPAs) on human embryonic fibroblasts cells (HEF) was detected by various methods. It depended on a chemical structure and concentrations. Dynamic indicators of cell growth, the metabolic changes under the influence of HPAs on xCelligence device indicated that the degree of a toxic effect of HPAs depended on the heteroatom. The cytotoxicity of silicon- containing samples was higher than the cytotoxicity of phosphorus-containing ones. The effect of HPAs on the phases of a cell growth and the development of apoptosis was shown by flow cytometry method and depended on the heteroatom of HPA and concentrations. The vanadium-containing sample suppressed a cell growth more actively and induced apoptosis.
In earlier work the cholesterol content reduction under the action of HPAs in HEF cells was revealed by mass-spectrometry method. Probably the depletion of cellular cholesterol in cyto plasmic membrane led to the change in the membrane permeability and the formation of pores. An additional factor could be the decrease in pH of the medium under the HPAs action. In this work we also detected the decrease in pH during the cultivation of cells with HPAs from 7.0-7.5 to 6.5.
Electron microscopic data indicated the cell destruction manifested in destruction of the cytoplasmic membrane structures under the influence of HPAs. Despite the identified morphological changes in cells under the action of HPAs, in terms of acute toxicity in mice the samples were characterized as moderate and low-toxic ones that makes them the promising substances for further study.
The presented results indicate the expediency of studying the mechanism of action of various HPAs representatives on cells, research the toxic properties in animals, examining antibacterial and antiviral activities in vitro and in vivo. It will help to substantiate the purposeful and safe use of these substances in medicine and veterinary.
Lopatina O.A., Baklanova O.V., Gushchina E.A., Suetina I.A., Isaeva H.I., Pritchina T.N., Mezentseva M.V., Bidevkina M.V., Kulak A.I., Dalidchik F.I., Kovalevskiy S.A. Toxicological research of heteropolyacids Keggin type in vitro and in vivo. Technologies of Living Systems. 2022. V. 19. № 2. Р. 14-21. DOI: https://doi.org/10.18127/j20700997-202202-02 (In Russian)
- Fournier M., Thouvenot R., Rocchiccioli-Deltcheff C. Catalysis by polyoxometalates. Part 1 -Supported polyoxoanions of the Keggin structure: spectroscopic study (IR, Raman, UV) of solutions used for impregnation. Journal of the Chemical Society, Faraday Transactions. 1991. V. 87. № 2. P. 349–356.
- Crans D.C., Mahroof-Tahir M., Anderson O.P., Miller M.M. X-ray Structure of (NH4) 6 (Gly-Gly) 2V10O28. cntdot. 4H2O: Model Studies for Polyoxometalate-Protein Interactions. Inorganic Chemistry. 1994. V. 33. № 24. P. 5586–5590.
- Rhule J.T., Hill C.L., Judd D.A. et al. Polyoxometalates in medicine. Chem. Rev. 1998. V. 98. P. 327–358.
- Shigeta S., Mori S., Yamase T. et al. Anti-RNA virus activity of polyoxometalates. Biomed. Pharmacother. 2006. V. 60. P. 211–219.
- Yanagie H., Ogata A., Mitsui S. et al. Anticancer activity of polyoxomolybdate. Biomed. Pharmacother. 2006. V. 60. P. 349–352.
- Hosseini S.M., Amini E., Kheiri M.T. et al. Anti-influenza Activity of a Novel Polyoxometalate Derivative (POM-4960). Int. J. Mol. Cell Med. Winter 2012. V. 1. № 1. P. 21–29.
- Lopatina O.A., Isayeva E.A., Suyetina I.A., Baklanova O.V., Pritchina T.N., Russu L.I., Kovalevskiy S.A., Dalidchik F.I., Mezentseva M.V. Protivovirusnaya aktivnost polioksometallatov i vliyaniye ikh na ekspressiyu genov tsitokinov. Nanomaterialy i nanostruktury. 2016.
T. 7. № 1. S. 36–45. (in Russian). - Katsuaki Dan, Katsuyuki Fujinami, Hajime Sumitomo, Yasuaki Ogiwara, Shigehiko Suhara, Yoshiharu Konno, Mitsuhiro Sawada, Yusuke Soga, Atsushi Takada, Keita Takanashi, Kenji Watanabe, Tatsuo Shinozuka. Antiviral of Antiviral Polyoxometalates to Living Environments — Antiviral Moist Hand Towels and Stationery Items. Appl. Sci. 2020. V. 10. P. 8246. DOI: 10.3390/app10228246
- Aureliano M., Gumtrova N.I., Sciortino G., Garribba E., Rompel A., Crans D.C. Polyoxovanadates with emerging biomedical activities. Coordination Chemistry Reviews. 2021. V. 447. P. 1–17.
- Ostroushko A.A., Gette I.F., Danilova I.G., Medvedeva S.Yu., Tonkushina M.O., Prokofyeva A.V. Issledovaniye khronicheskoy toksichnosti molibdenovykh i zhelezo-molibdenovykh nanoklasternykh polioksometallatov. Uralskiy meditsinskiy zhurnal. 2011.
№ 11(89). S. 75–79. (In Russian). - Ostroushko A.A., Gette I.F., Medvedeva S.Yu., Tonkushina M.O., Danilova I.G., Prokofyeva A.V., Morozova M.V. Otsenka bezopasnosti zhelezo-molibdenovykh nanoklasternykh polioksometallatov. prednaznachennykh dlya adresnoy dostavki lekarstvennykh veshchestv. Vestnik uralskoy akademicheskoy meditsinskoy nauki. 2011. № 2 (34). S. 107–110. (in Russian).
- Lopatina O.A., Baklanova O.V., Suyetina I.A., Isayeva E.I., Gushchina E.A., Russu L.V., Lisitsin F.A., Kovalevskiy S.A., Budanov B.A., Dalichik F.I., Mezentseva M.V. Issledovaniye toksicheskogo effekta polioksometallatov so strukturoy Keggina na kultury normalnykh i onkogennykh kletok. Biomeditsinskaya radioelektronika. 2015. № 3. S. 42–49. (in Russian).
- Khabriyev R.U. Rukovodstvo po eksperimentalnomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. M.: Meditsina. 2005. S. 649–650. (in Russian).
- Metodika opredeleniya tsitotoksichnosti veshchestv MTT-testom na kulture normalnykh kletok cheloveka HEK293. CTP-14.621.21.0008.12-2015 FGBUN Institut fiziologicheski aktivnykh veshchestv RAN. Chernogolovka. Moskovskaya obl. 2015. S. 8–9. (in Russian).
- StatSoft. Inc.(2012) Elektronnyy uchebnik po statistike. M. StatSoft.WEB:http://www. Statsoft./home/textbook/default.html (in Russian).
- Asphahani F, Thein M., Wang K, Wood D. et al. Real-time characterization of cytotoxicity, using single-cell impedance monitoring. Analyst. 2012. V. 137. P. 116.
- Khaydukov S.B., Zurochka A.V. Voprosy sovremennoy protochnoy tsitometrii. Klinicheskoye primeneniye. Chelyabinsk. 2008. S. 54–161. (in Russian).
- Metodicheskiye ukazaniya MU 1.2.1105-02 «Otsenka toksichnosti i opasnosti dezinfitsiruyushchikh sredstv» (utv. Glav. gos. sanitarnym vrachom RF 10 fevralya 2002 g.) Prilozheniye. (in Russian).
- Kovalevskiy S.A., Gulin A.A., Lopatina O.A., Vasin A.A., Mezentseva M.V., Balashov E.M., Kulemin D.A., Kulak A.I., Dalidchik F.I. Vozdeystviye nanorazmernykh anionov kremniy-molibdenovoy kisloty na plazmaticheskuyu membranu fibroblastov embriona cheloveka. Rossiyskiye nanotekhnologii. 2019. T. 14. № 9–10. S. 77–84. (in Russian).
- Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front. Oncol. 2012. V. 2. Article 140. P. 1. DOI: 10.3389/fonc.2012.00140
- Maxfield F.R., van Meer G. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 2010. V. 22. P. 422. DOI: 10.1016/j.ceb.2010.05.004
- Chakraborty S., Doktorova M., Molugu T.R. et al. How cholesterol stiffens unsaturated lipid membranes. PNAS. 2020. V. 202004807.
P. 1. DOI: 10.1073/pnas.2004807117 - Brown D.A., London E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 1998. V. 14. P. 111.