350 rub
Journal Technologies of Living Systems №1 for 2021 г.
Article in number:
Relation of a number of significantly changing blood proteins with angiogenesis after 21 days of dry immersion
DOI: 10.18127/j20700997-202101-05
UDC: 571.27
Authors:

L.H. Pastushkova¹, I.N. Goncharov², D.N. Kashirina³, A.G. Goncharova4, I.M. Larina5

1–5 State Scientific Center of the RF – Institute of Biomedical Problems of the RAS (Moscow, Russia)

Abstract:

The scanty and contradictory data on the state of angiogenesis under conditions of space flights and model ground-based experiments make it relevant to study the relationship of a number of reliably changing blood proteins with the processes of angiogenesis.

Search for blood proteins associated with angiogenesis on the first day after 21-day immersion.

Proteome and bioinformatics methods were used to study the blood proteome and to analyze the role of significantly changing proteins in relation to angiogenesis after 21-day dry immersion in ten practically healthy volunteers. Unidirectional changes in the proteome were revealed in relation to the regulation of angiogenesis. 9 proteins (vitronectin, fibronectin, fibrinogen, transthyretin, protein S, prothrombin, apolipoprotein A1, clusterin, haptoglobin) associated with the processes of angiogenesis were isolated; their level changed significantly (p <0.01) by 21 days of volunteers' stay in dry immersion. Protein-to-protein connections and associations have been established.

The data obtained are of interest to physiologists, cardiologists and specialists in the field of space biology and medicine. Expansion of proteomic research in this area is promising in relation to the prevention of pathological angiogenesis in conditions of work in extreme conditions, including pressurized facilities.

Pages: 51-57
For citation

Pastushkova L.H., Goncharov I.N., Kashirina D.N., Goncharova A.G., Larina I.M. Relation of a number of significantly changing blood proteins with angiogenesis after 21 days of dry immersion. Technologies of living systems. 2021. V. 18. № 1. P. 51–57. DOI: 10.18127/j20700997-202101-05 (In Russian).

References
  1. Sprindzhuk M.V. Angiogenez. Zhurnal ONCOLOGY.RU. 2010 (In Russian).
  2. Petrova L.V., Kushlinskij N.E., Il'ina L.V. Faktor rosta endoteliya sosudov kak pokazatel' gipoksii tkanej, ego vozmozh-naya rol' v patogeneze ploskogo lishaya slizistoj obolochki rta. Vestnik dermatologii i venerologii. 2004. № 5. S. 7–8 (In Russian).
  3. Shi F., Wang Y.C., Hu Z.B., Xu H.Y., Sun J., Gao Y., Li X.T., Yang Ch.-B., Xie Ch., Li Ch.-F., Zhang S., Zhao J.-D., Cao X.-S., Sun X.-Q. Simulated Microgravity Promotes Angiogenesis through RhoA-Dependent Rearrangement of the Actin Cytoskeleton. Cell Physiol Biochem. 2017. V. 41. № 1. P. 227–238.
  4. Kozlovskaya I.B. Fundamental'nye i prikladnye zadachi immersionnyh issledovanij. Aviakosmicheskaya i ekologicheskaya medicina. 2008. T. 42. № 5. S. 3–8 (In Russian).
  5. Pastushkova L.H., Paharukova N.A., Novoselova N.M., Dobrohotov I.V., Valeeva O.A., Kusto M.-A., Larina I.M. Pryamoe proteomnoe profilirovanie mochi i syvorotki krovi cheloveka v eksperimente s 5-sutochnoj «suhoj» immersiej. Aviakos-micheskaya i ekologicheskaya medicina. 2012. T. 46. № 4. S. 31–37 (In Russian).
  6. Wang L., Zhang X., Pang N., Xiao L., Li Y., Chen N., Ren M., Deng X., Wu J. Glycation of vitronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2-αvβ3 integrin cross-talk. Cell Death Dis. 2015;6(6):e1796. Published 2015 Jun 25. 
  7. Mathew J.G., Basehore S., Clyne A.M. Fluid Shear Stress and Fibroblast Growth Factor-2 Increase Endothelial Cell-Associated Vitronectin. Appl Bionics Biomech. 2017. V. 17. P. 9040161.
  8. Dergilev K.V., Tsokolaeva Z.I., Beloglazova I.B., Ratbner, Parfyonova E. V. Urokinase Receptor Regulates Adhesion of Progenitor Cardiac Cells to Vitronectin. Bull ExpBiol Med. 2019. V. 167(3). P. 315–319.
  9. Kozlov A.A., Berkovich A.L., Kachalova N.D., Sergeeva E.V., Prostakova T.M. Posobie dlya vrachej-laborantov po metodam issledovaniya plazmennogo gemostaza. M.: Rossijskaya akademiya medicinskih nauk. 2006. S. 24 (In Russian).
  10. McKenzie J.M., Celander D.R., Guest M.M. Fibrinogen titer as an indicator of physiologic stability. Am. J. Physiol. 1963. V. 204. P. 42–44.
  11. Pizova N.V. Trombofilii: geneticheskie polimorfizmy i sosudistye katastrofy. M.: IMA-PRESS. 2013. 248 s. (In Russian).
  12. Kuzichkin D.S., Markin A.A., Morukov B.V., Zhuravleva O.A., Zabolotskaya I.V., Vostrikova L.V. Effect of physical countermeasures against support load deficiency on the hemostasis system in an experiment with 7-day immersion. Aviakosm Ekolog Med. 2013. V. 47. № 3. P. 30–34.
  13. Dahlbäck B. Vitamin K-Dependent Protein S: Beyond the Protein C Pathway. SeminThromb Hemost. 2018. V. 44(2). P. 176–184. 
  14. Fraineau S., Monvoisin A., Clarhaut J. et al. The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a Mer- and ShP2-dependent manner. Blood. 2012. V. 120(25). P. 5073–5083. DOI:10.1182/blood-2012-05-429183.
  15. Zhalyalov A.S., Balandina A.N., Kuprash A.D., Shrivastava A., Shibeko A.M. Sovremennye predstavleniya o sisteme fibrino-liza i metodah diagnostiki ee narushenij. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2017. T. 16. № 1. S. 69‒82 (In Russian). 
  16. Haruna Y., Hasegawa N., Imanaka K., Kawamoto S., Inoue A. Clinical Impact of Vitamin K Dosing on Sorafenib Treatment for Hepatocellular Carcinoma. J Cancer. 2017. V. 8(11). P. 1988–1994.
  17. Hwang S., Lee D.H., Lee I.K., Park Y.M., Jo I. Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels. Cancer Lett. 2014. V. 346(1). P. 74–83.
  18. Basic J., Stojkovic S., Assadian A., et al. The Relevance of Vascular Endothelial Growth Factor, Hypoxia Inducible Factor-1 Alpha, and Clusterin in Carotid Plaque Instability.J Stroke Cerebrovasc Dis. 2019. V. 28(6). P. 1540–1545.
  19. Chumakova G.A., Gricenko O.V., Veselovskaya N.G., Vahromeeva E.V., Kozarenko A.A. Klinicheskoe znachenie apolipoproteinov A i V. Kardiovaskulyarnaya terapiya i profilaktika. 2011. V. 10(6). S. 105–111 (In Russian).
  20. Efthymiou G., Saint A., Ruff M., Rekad Z., Ciais D., Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cel-lular Fibronectin. FrontOncol. 2020. V. 10. P. 641.
  21. Neri D., Carnemolla B., Nissim A., et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol. 1997. V. 15(12). P. 1271–1275.
  22. Hielscher A., Ellis K., Qiu C., Porterfield J., Gerecht S. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLoSOne. 2016. V. 11(1). P. 14–67.
  23. Kopishinskaya S.V. Transtiretinovaya semejnaya amiloidnaya polinejropatiya. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2018. № 10. S. 82–89 (In Russian).
  24. Tanaka K., Essick E.E., Doros G., Tanriverdi K., Connors L.H., Seldin D.C., Sam F. Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis. J. Am. Heart Assoc. 2013. V. 2. № 2.
  25. Fan G., Gu Y., Zhang J., et al. Transthyretin Upregulates Long Non-Coding RNA MEG3 by Affecting PABPC1 in Diabetic Reti-nopathy. Int. J. Mol. Sci. 2019. V. 20(24). P. 6313. Published 2019 Dec 13.
  26. Shao J., Zhang Y., Fan G., Xin Y., Yao Y. Transcriptome analysis identified a novel 3-LncRNA regulatory network of transthyretin attenuating glucose induced hRECs dysfunction in diabetic retinopathy. BMC MedGenomics. 2019. V. 12(1). P. 134.
  27. Larina I.M. Gormonal'naya regulyaciya. Orbital'naya stanciya MIR. M.: Anikom. 2002. Ch. I. Gl. 14. S. 603–606 (In Russian).
  28. Oh M.K., Kim I.S. Involvement of placental growth factor upregulated via TGF-β1-ALK1-Smad1/5 signaling in prohaptoglobin-induced angiogenesis.PLoSOne. 2019. V. 14(4). P. e0216289. Published 2019 Apr 29.
  29. Cid M.C., Grant D.S., Hoffman G.S., Auerbach R., Fauci A.S., Kleinman H.K. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J. Clin. Invest. 1993. V. 91(3). P. 977–985.
  30. Lu J., Wang Y., Yan M. et al. High serum haptoglobin level is associated with tumor progression and predicts poor prognosis in nonsmall cell lung cancer. Oncotarget. 2016. V. 7(27). P. 41758–41766.
  31. Mariotti M., Maier J.A. Gravitational unloading induces an anti-angiogenic phenotype in human microvascular endothelial cells. J. Cell Biochem. 2008. V. 104(1). P. 129–135.
  32. Seta F., Cohen R.A. The endothelium: paracrine mediator of aortic dissection. Circulation. 2014. V. 129(25). P. 2629–2632.
  33. Crucian B. E., Zwart S.R., Mehta S. et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J. Interferon Cytokine Res. 2014. V. 34(10). P. 778–786.
  34. Shi F., Wang Y.C., Hu Z.B., Xu H.Y., Sun J., Gao Y., Li X.T. et al. Simulated Microgravity Promotes Angiogenesis through RhoADependent Rearrangement of the Actin Cytoskeleton. Cell Physiol Biochem. 2017. V. 41. № 1. P. 227–238.
  35. Buravkova L.B., Rudimov E.G., Andreeva E.R., Grigoriev A.I. The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity. J. Cell Biochem. 2018. V. 119. № 3. P. 2875–2885.
Date of receipt: 07.10.2020
Approved after review: 07.11.2020
Accepted for publication: 25.12.2020