350 rub
Journal Technologies of Living Systems №1 for 2021 г.
Article in number:
Сalcium-sensing receptor, α-klotho and FGF21 in the development of nephrolithiasis. Review article
DOI: 10.18127/j20700997-202101-03
UDC: 616.6
Authors:

I.I. Golodnikov¹, Z.Sh. Pavlova², A.A. Kamalov³, A.V. Savilov4

2,3 Medical Scientific-Educational Center of Lomonosov Moscow State University (Moscow, Russia), 

1–3 Lomonosov Moscow State University (Moscow, Russia), 

4 Central Military Clinical Hospital n.a. P.V. Mandryk of the Ministry of Defense of the Russian Federation (Moscow, Russia)

Abstract:

CaSR (calcium-sensing receptor) is a G coupled plasma membrane protein. The main function is a reaction to a certain level of calcium in the blood and inside the structural departments of the nephron.

CaSR is interesting in the aspect of nephrolithiasis in view of its active involvement in calcium metabolism. Moreover, it affects this metabolism from different angles. Firstly, it has a significant effect on the metabolism of vitamin D, reducing its synthesis, through the suppression of 1α-hydroxylase and at the same time increasing the number of its receptors. Secondly, with an increase in blood calcium levels, CaSR inhibits ROMK, which is a limiting factor in calcium reabsorption, thereby regulating serum calcium levels. Thirdly, CaSR controls the expression of claudin proteins of type 14, 16, 19, providing facilitated diffusion of calcium through special intercellular channels or vice versa, preventing this diffusion. 

The importance of the physiological functioning of CaSR is determined not only by its significant influence on calcium metabolism, but also by the fact that a number of diseases associated with CaSR defects have already been confirmed: autosomal dominant hypokalemia, family isolated hyperparathyroidism, and a number of genetic disorders of the CaSR associated with kidney stones have been found. In other words, the relevance of genetic analysis for CaSR and its polymorphisms or mutations in relation to nephrolithiasis is reasonable. About the KL-1 gene and the two forms of the α-klotho protein encoded by it, shortened and full-sized, it is known that they are expressed mainly in tissues associated with the regulation of calcium metabolism, which attracts our attention regarding kidney stone disease. 

The functions of α-klotho are also relevant in the aspect of the topic we are considering: the secretion of parathyroid hormone and a subsequent increase in serum calcium; rapid regulation of extracellular calcium; regulation of calcium levels, through the suppression of calcitriol synthesis, by conducting an FGF23 signal. In addition, α-klotho also serves as the coenzyme / coreceptor of FGF23, binding to the FGF23 receptor, significantly increasing the affinity of the receptor for FGF23, which in turn will not only inhibit the synthesis of vitamin D, but also increase the activity of 24-hydroxylase responsible for the synthesis and Vitamin D catabolism, respectively.

Pages: 32-40
For citation

Golodnikov I.I., Pavlova Z.Sh., Kamalov A.A., Savilov A.V. Сalcium-sensing receptor, α-klotho and FGF21 in the development of nephrolithiasis. Review article. Technologies of living systems. 2021. V. 18. № 1. P. 32–40. DOI: 10.18127/j20700997202101-03 (In Russian).

References
  1. Geng Y., Mosyak L., Kurinov I., Zuo H., Sturchler E., Cheng T. C., Subramanyam P., Brown A.P., Brennan S.C., Mun H.C., Bush M., Chen Y., Nguyen T.X., Cao B., Chang D.D., Quick M., Conigrave A.D., Colecraft H.M., McDonald P., Fan Q.R. Structural mechanism of ligand activation in human calcium-sensing receptor. Elife. 2016. V. 5. P. e13662.
  2. Brown E.M. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab. 2013.  V. 27. № 3. P. 333–343.
  3. Hannan F.M., Thakker R.V. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract Res Clin Endocrinol Metab. 2013. V. 27. № 3. P. 359–371.
  4. Mirnaya S., Pigarova E., Belyaeva A., Mokrysheva N., Tyul'pakov A. Rol' kal'cij-chuvstvitel'nogo receptora v podderzhanii sistemy kal'cievogo gomeostaza // Osteoporoz i osteopatii. 2010. № 3. C. 32–36 (In Russian).
  5. Hofer A.M., Brown E.M. Extracellular calcium sensing and signaling. Nat. Rev. Mol. Cell. Biol. 2003. V. 4. № 7. P. 530–538.
  6. Thakker R.V. Calcium-sensing receptor: Role in health and disease. Indian J. Endocrinol. Metab. 2012. V. 16. № Suppl 2. P. S213–S216.
  7. Loupy A., Ramakrishnan S.K., Wootla B., Chambrey R., de la Faille R., Bourgeois S., Bruneval P., Mandet C., Christensen E.I., Faure H., Cheval L., Laghmani K., Collet C., Eladari D., Dodd R. H., Ruat M., Houillier P. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin Invest. 2012. V. 122. № 9. P. 3355–3367.
  8. Riccardi D., Valenti G. Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol. 2016. V. 12. № 7. P. 414–25.
  9. Riccardi D., Brown E. M. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am. J. Physiol. Renal. Physiol. 2010. V. 298. № 3. P. F485–F499.
  10. Maiti A., Beckman M.J. Extracellular calcium is a direct effecter of VDR levels in proximal tubule epithelial cells that counter-balances effects of PTH on renal Vitamin D metabolism. J. Steroid. Biochem. Mol. Biol. 2007. V. 103. № 3–5. P. 504–8.
  11. Zacchia M., Capolongo G., Rinaldi L., Capasso G. The importance of the thick ascending limb of Henle's loop in renal physiology and pathophysiology. Int. J. Nephrol. Renovasc. Dis. 2018. V. 11. P. 81–92.
  12. Kohda Y., Ding W., Phan E., Housini I., Wang J., Star R.A., Huang C.L. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney. Kidney Int. 1998. V. 54. № 4. P. 1214–1223.
  13. Toka H.R., Pollak M.R., Houillier P. Calcium Sensing in the Renal Tubule. Physiology (Bethesda). 2015. V. 30. № 4. P. 317–326.
  14. Gu R.M., Wei Y., Falck J.R., Krishna U.M., Wang W.H. Effects of protein tyrosine kinase and protein tyrosine phosphatase on apical K(+) channels in the TAL. Am. J. Physiol. Cell. Physiol. 2001. V. 281. № 4. P. C1188–C1195.
  15. Gamba G., Friedman P.A. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch. 2009. V. 458. № 1. P. 61–76.
  16. Gong Y., Renigunta V., Himmerkus N., Zhang J., Renigunta A., Bleich M., Hou J. Claudin-14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. Embo j. 2012. V. 31. № 8. P. 1999–2012.
  17. Claverie-Martin F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin Kidney J. 2015. T. 8. № 6. C. 656–664.
  18. Vezzoli G., Terranegra A., Rainone F., Arcidiacono T., Cozzolino M., Aloia A., Dogliotti E., Cusi D., Soldati L. Calcium-sensing receptor and calcium kidney stones. J. Transl. Med. 2011. V. 9. P. 201.
  19. Hoenderop J.G., Bindels R.J. Epithelial Ca2+ and Mg2+ channels in health and disease. J. Am. Soc. Nephrol. 2005. V. 16. № 1. P. 15–26.
  20. Nedvetsky P.I., Tamma G., Beulshausen S., Valenti G., Rosenthal W., Klussmann E. Regulation of aquaporin-2 trafficking. Handb Exp Pharmacol. 2009.10.1007/978-3-540-79885-9_6 № 190. P. 133–157.
  21. Kwan B., Champion B., Boyages S., Munns C. F., Clifton-Bligh R., Luxford C., Crawford B. A novel CASR mutation (p.Glu757Lys) causing autosomal dominant hypocalcaemia type 1. Endocrinol. Diabetes Metab. Case Rep. 2018. V. 2018. № 1 P. 1–4.
  22. Vahe C., Benomar K., Espiard S., Coppin L., Jannin A., Odou M.F., Vantyghem M.C. Diseases associated with calcium-sensing receptor. Orphanet. J. Rare Dis. 2017. V. 12. № 1. P. 19.
  23. Thakker R.V. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium. 2004. V. 35. № 3. P. 275–282.
  24. Prokhorova T.A., Boksha I.S., Savushkina O.K., Tereshkina E.B., Burbaeva G.S. [alpha-Klotho protein in neurodegenerative and mental diseases]. Zh. Nevrol. Psikhiatr. im. S.S. Korsakova. 2019. V. 119. № 1. P. 80–88.
  25. Chen C.D., Podvin S., Gillespie E., Leeman S.E., Abraham C.R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc. Natl. Acad. Sci. USA. 2007. V. 104. № 50. P. 19796–19801.
  26. Han X., Quarles L.D. Multiple faces of fibroblast growth factor-23. Curr Opin Nephrol Hypertens. 2016. V. 25. № 4. P. 333–342.
  27. Gigante M., Lucarelli G., Divella C., Netti G.S., Pontrelli P., Cafiero C., Grandaliano G., Castellano G., Rutigliano M., Stallone G., Bettocchi C., Ditonno P., Gesualdo L., Battaglia M., Ranieri E. Soluble Serum alphaKlotho Is a Potential Predictive Marker of Disease Progression in Clear Cell Renal Cell Carcinoma. Medicine (Baltimore). 2015. V. 94. № 45. P. e1917.
  28. Andrukhova O., Smorodchenko A., Egerbacher M., Streicher C., Zeitz U., Goetz R., Shalhoub V., Mohammadi M., Pohl E.E., Lanske B., Erben R.G. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. Embo j. 2014. V. 33. № 3. P. 229–246.
  29. Flotynska J., Uruska A., Araszkiewicz A., Zozulinska-Ziolkiewicz D. Klotho protein function among patients with type 1 diabetes. Endokrynol Pol. 2018. V. 69. № 6. P. 696–704.
  30. Nabeshima Y., Imura H. alpha-Klotho: a regulator that integrates calcium homeostasis. Am. J. Nephrol. 2008. V. 28. № 3. P. 455–464.
  31. Chang Q., Hoefs S., van der Kemp A.W., Topala C.N., Bindels R.J., Hoenderop J.G. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005. V. 310. № 5747. P. 490–493.
  32. Staiger H., Keuper M., Berti L., Hrabe de Angelis M., Haring H.U. Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocr Rev. 2017. V. 38, № 5. P. 468–488.
  33. Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., Gromada J., Brozinick J.T., Hawkins E.D., Wroblewski V.J., Li D.S., Mehrbod F., Jaskunas S.R., Shanafelt A.B. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005. V. 115. № 6. P. 1627–1635.
  34. Straub L., Wolfrum C. FGF21, energy expenditure and weight loss – How much brown fat do you need - Mol. Metab. 2015. V. 4. № 9. P. 605–609.
  35. Fisher F.M., Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev. Physiol. 2016. V. 78. P. 223–241.
  36. Ong K.L., Rye K.A., O'Connell R., Jenkins A.J., Brown C., Xu A., Sullivan D.R., Barter P.J., Keech A.C. Long-term fenofibrate therapy increases fibroblast growth factor 21 and retinol-binding protein 4 in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 2012.  V. 97. № 12. P. 4701–4708.
  37. Kim K.H., Lee M.S. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J. Endocrinol. 2015. V. 226. № 1. P. R1–16.
  38. Wanders D., Forney L.A., Stone K.P., Burk D.H., Pierse A., Gettys T.W. FGF21 Mediates the Thermogenic and Insulin-Sensitizing Effects of Dietary Methionine Restriction but Not Its Effects on Hepatic Lipid Metabolism. Diabetes. 2017. V. 66. № 4. P. 858–867.
  39. Hsuchou H., Pan W., Kastin A.J. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007. V. 28. № 12. P. 2382–2386.
  40. Stein S., Bachmann A., Lossner U., Kratzsch J., Bluher M., Stumvoll M., Fasshauer M. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care. 2009. V. 32. № 1. P. 126–128.
  41. Hindricks J., Ebert T., Bachmann A., Kralisch S., Lossner U., Kratzsch J., Stolzenburg J.U., Dietel A., Beige J., Anders M., Bast I., Bluher M., Stumvoll M., Fasshauer M. Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction. Clin Endocrinol (Oxf). 2014. V. 80. № 6. P. 918–924.
  42. John B.S., Patel U., Anson K. What radiation exposure can a patient expect during a single stone episode - J. Endourol. 2008. V. 22.  № 3. P. 419–422.
  43. Stamatelou K.K., Francis M.E., Jones C.A., Nyberg L.M., Curhan G.C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003. V. 63. № 5. P. 1817–1823.
Date of receipt: 13.08.2020
Approved after review: 15.12.2020
Accepted for publication: 15.01.2021