L.H. Pastushkova −
Dr.Sc. (Biol.), Leading Research Scientist, SSC RF IMBP RAS (Moscow)
E-mail: lpastushkova@mail.ru
A.G. Goncharova −
Dr.Sc. (Med.), Leading Research Scientist, SSC RF IMBP (Moscow)
E-mail: Goncharova.anna@gmail.com
K.D. Orlova −
Research Scientist, Laboratory of Proteomics, SSC RF IBMP RAS (Moscow) E-mail: unusual-ksu@yandex.ru
D.N. Kashirina −
Research Scientist, SSC RF IBMP RAS (Moscow)
E-mail: daryakudryavtseva@mail.ru
N.B. Zaharova −
Dr.Sc. (Med.), Professor, Clinical Laboratory Diagnostics, V.I. Razumovsky State Medical University (Saratov) A.S. Kononihin −
Ph.D. (Phys.-Math.), Senior Research Scientist, SSC RF IBMP RAS (Moscow)
E-mail: alex. kononikhin @ gmail.com
A.G. Brzozowski −
Post-graduate Student, SSC RF IBMP RAS (Moscow)
E-mail: agb.imbp@gmail.com
S.A. Ponomarev −
Ph.D. (Med.), Leading Research Scientist, SSC RF IMBP RAS (Moscow) E-mail: dr.grey@bk.ru
I.M. Larina −
Dr.Dc. (Med.), Professor, Head of The Laboratory of Proteomics, SSC RF IBMP RAS (Moscow) E-mail: Irina larina. @ gmail. comtel
Despite the available data on the change in the number and activity of immunocompetent cells after space flights of varying durations and model studies, the mechanisms of the changes that occur remain unclear. The goal of the work: to find out the role of the proteomy in changes in the immune system. Proteomic and bioinformation methods investigated the pairing of protein processes, protein-regulators and Toll receptors in the context of 17-day isolation of the «SIRIUS” project in 6 practically healthy volunteers. The results of the study: despite sexual and genetic differences, during the 17-day period of isolation in the hermoobject revealed one-directional changes in protein regulators and interconnected receptors of the immune system links. 10 proteins related to the functions of the cellular link of the immune system were isolated, the level of most of them reliably changed (p < 0,01) after 17 days of volunteers' stay in the germoobject. In the process of regulating the activity of TLR4 involved 7 proteins, reliably changing under the influence of factors 2 weeks of isolation: FcRIII, MUC1, Galectin-3, Ficolin-2, APOA1, FLNA, FCGR3A. Clusterin protein is involved in the TLR2 regulation process. TLR9 - linked to GDF15, and CD4 - regulates FLNA. Reducing the level of peripheral blood monocytes expressing TLR, identified after short-term exposure to such a factor of space flight as staying in isolation, can be considered as a risk of possible inflammatory dysregulation processes caused by opportunistic pathogens in the early stages of adaptation to extreme environmental conditions. As a result, chronic diseases may worsen and the incidence of non-specific diseases, including respiratory, otitis, dermatitis and some other pathologies, may increase. Practical application and perspectives: The findings are of interest to physiologists, immunologists and specialists in space biology and medicine. Promising expansion of proteomy research in relation to the prevention of changes in the immune system in the conditions of work in the facilities.
- Majer O., Liu B., Barton G.M. Nucleic acid-sensing TLRs: trafficking and regulation // Curr Opin Immunol. 2017. № 44. Р. 26−33.
- Haitov R.M. Immunologiya: struktura i funkcii immunnoj sistemy: Uchebnoe posobie. M.: GEOTAR-Media. 2013. 280 s.
- Morukov B., Rykova M., Antropova E. et al. T-cell immunity and cytokine production in cosmonauts after long-duration space flights // Acta Astronaut. 2011. V. 68. P. 739.
- Ponomarev S., Kutko O., Rykova M., Kalinin S., Antropova E., Sadova A., Orlova K., Shulgina S. Changes in the cellular component of the human innate immunity system in short-term isolation // Acta Astronautica. 2020. V. 166. P. 89−92.
- Belavý D.L., Gast U., Daumer M., et al. Progressive adaptation in physical activity and neuromuscular performance during 520d confinement // PLoS One. 2013. V. 8. № 3. P. e60090.
- Agron I.A., Avtonomov D.M., Kononihin A.S., Popov I.A., Moshkovskij S.A., Nikolaev E.N. Baza dannyh po tochnym massovo-vremennym metkam dlya hromato-mass-spektrometricheskogo analiza proteoma mochi // Biohimiya. 2010. T. 75. № 4. S. 598−605.
- Camon E., Magrane M., Barrell D., Lee V., Dimmer E., Maslen J., Binns D., Harte N., Lopez R., Apweiler R. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology // Nucleic Acids Res. 2011. V. 1; 32(Database issue):D262-6.
- Ashburner M., Ball C.A., Blake J.A, Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., IsselTarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. Gene ontology: tool for the unification of biology //The Gene Ontology Consortium. Nat Genet. 2000. V. 25. № 1. P. 25−29.
- Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data // Electrophoresis. 1999. V. 20. № 18. P. 3551−3567.
- Rock F.L., Hardiman G., Timans J.C., Kastelein R.A., Bazan J.F. A family of human receptors structurally related to Drosophila Toll // Proc. Natl. Acad. Sci. USA. 1998. V. 20; № 95(2). P. 588−593.
- Tatematsu M., Yoshida R., Morioka Y., Ishii N., Funami K., Watanabe A., Saeki K., Seya T., Matsumoto M. Raftlin Controls LipopolysaccharideInduced TLR4 Internalization and TICAM-1 Signaling in a Cell Type-Specific Manner // J. Immunol. 2016. V. 1. № 196(9). P. 3865−3876.
- Estruch M., Bancells C., Beloki L., Sanchez-Quesada J.L., Ordóñez-Llanos J., Benitez S. CD14 and TLR4 mediate cytokine release promoted by electronegative LDL in monocytes //Atherosclerosis. 2013. V. 229. № 2. P. 356−362.
- Shalova I.N., Kajiji T., Lim J.Y., Gómez-Piña V., Fernández-Ruíz I., Arnalich F., Iau P.T., López-Collazo E., Wong S.C., Biswas S.K. CD16 regulated TRIF-dependent TLR4 response in human monocytes and their subsets // J. Immunol. 2012. V. 15. № 188(8). P. 3584−3593.
- Hanson R.L., Hollingsworth M.A. Functional consequences of differential oglycosylation of MUC1, MUC4, and MUC16 (Downstream effects on signaling) // Biomolecules. 2016. V. 6. P. 1–21.
- Chang J.F., Zhao H.L., Phillips J., Greenburg G. The epithelial mucin, MUC1, is expressed on resting T lymphocytes and can function as a negative regulator of T cell activation // Cell. Immunol. 2000. V. 1. № 201(2). P. 83−88.
- Kato K., Lillehoj E.P., Lu W., Kim K.C. MUC1. The First Respiratory Mucin with an Anti-Inflammatory Function // J. Clin. Med. 2017. V. 29. № 6(12). P. E110.
- Than N.G., Romero R., Goodman M., Weckle A., Xing J., Dong Z., Xu Y., Tarquini F., Szilagyi A., Gal P., Hou Z., Tarca A.L., Kim C.J., Kim J.S., Haidarian S., Uddin M., Bohn H., Benirschke K., Santolaya-Forgas J., Grossman L.I., Erez O., Hassan S.S., Zavodszky P., Papp Z., Wildman D.E. A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death // Proc. Natl. Acad. Sci. USA. 2009. V. 16. № 106(24). P. 9731−9736.
- Chauhan S., Kumar S., Jain A., Ponpuak M., Mudd M.H., Kimura T., Choi S.W., Peters R., Mandell M., Bruun J.A., Johansen T., Deretic V. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis // Dev. Cell. 2016. V. 10. № 39(1). P. 13−27.
- Jovanovic M., Gajovic N., Zdravkovic N., Jovanovic M., Jurisevic M., Vojvodic D., Maric V., Arsenijevic A., Jovanovic I. Fecal Galectin-3: A New Promising Biomarker for Severity and Progression of Colorectal Carcinoma // Mediators Inflamm. V. 4. P. 803−1328
- Garlatti V., Belloy N., Martin L., Lacroix M., Matsushita M., Endo Y., Fujita T., Fontecilla-Camps J.C., Arlaud G.J., Thielens N.M., Gaboriaud C. Structural insights into the innate immune recognition specificities of L- and H-ficolins // EMBO J. 2007. V. 24. № 26(2). P. 623−633.
- Ding Q., Shen Y., Li D., Yang J., Yu J., Yin Z., Zhang X.L. Ficolin-2 triggers antitumor effect by activating macrophages and CD8+ T. cells // Clin Immunol. 2017. № 183. P. 145−157.
- Ferrara C., Grau S., Jäger C., Sondermann P., Brünker P., Waldhauer I., Hennig M., Ruf A., Rufer A.C., Stihle M., Umaña P., Benz J. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose // Proc. Natl. Acad. Sci. USA. 2011. V. 2. № 108(31). P. 12669−12674.
- Pankhurst G., Wang X.L., Wilcken D.E., Baernthaler G., Panzenböck U., Raftery M., Stocker R. Characterization of specifically oxidized apolipoproteins in mildly oxidized high density lipoprotein // J. Lipid. Res. 2003 .V. 44. № 2. P. 349−355.
- Cheng A.M., Handa P., Tateya S., Schwartz J., Tang C., Mitra P., Oram J.F., Chait A., Kim F. Apolipoprotein A-I ate-nuates palmitate-mediated NF-κB activation by reducing Toll-like receptor-4 recruitment into lipid rafts // PLoS One. 2012. V. 7. № 3. P. e33917.
- Adams M., Simms R.J., Abdelhamed Z., Dawe H.R., Szymanska K., Logan C.V., Wheway G., Pitt E., Gull K., Knowles M.A., Blair E., Cross S.H., Sayer J.A., Johnson C.A. A meckelin-filamin A interaction mediates ciliogenesis // Hum. Mol. Genet. 2012. V. 15. № 21(6). P. 1272−1286.
- Drage M.G., Pecora N.D., Hise A.G., Febbraio M., Silverstein R.L., Golenbock D.T., Boom W.H., Harding C.V. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis // Cell. Immunol. 2009. V. 258. № 1. P. 29−37.
- Clarke S.T., Green-Johnson J.M., Brooks S.P., Ramdath D.D., Bercik P., Avila C., Inglis G.D., Green J., Yanke L.J., Selinger L.B., Kalmokoff M. β21 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults // Br. J. Nutr. 2016. V. 28. № 115(10). P. 1748−1759.
- Andersen C.L., Schepeler T., Thorsen K., Birkenkamp-Demtroder K., Mansilla F., Aaltonen L.A., Laurberg S., Orntoft T.F. Clusterin expression in normal mucosa and colorectal cancer // Mol. Cell. Proteomics. 2007. № 6. P. 1039−1048.
- Leong W.F., Chow V.T. Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection // Cell Microbiol. 2006. V. 8. № 4. P. 565−580.
- Li F.J., Schreeder D.M., Li R., Wu J., Davis R.S. FCRL3 promotes TLR9-induced B-cell activation and suppresses plasma cell differentiation // Eur. J. Immunol. 2013. V. 43, № 11. P. 2980−2992.
- Yokoyama-Kobayashi M., Saeki M., Sekine S., Kato S. Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta // J. Biochem. 1997. V. 122. № 3. P. 622−626.
- Hsu J.Y., Crawley S., Chen M., Ayupova D.A., Lindhout D.A., Higbee J., Kutach A., Joo W., Gao Z., Fu D., To C., Mondal K., Li B., Kekatpure A., Wang M., Laird T., Horner G., Chan J., McEntee M., Lopez M., Lakshminarasimhan D., White A., Wang S.P., Yao J., Yie J., Matern H., Solloway M., Haldankar R., Parsons T., Tang J., Shen W.D., Alice Chen , Tian H., Allan B.B. Non-homeostatic body weight regulation through a brainstemrestricted receptor for GDF15 // Nature. 2017. V. 12. № 550(7675). P. 255−259.
- Nikonova A.A., Haitov M.R., Haitov R.M. Perspektivy ispol'zovaniya agonistov i antagonistov Toll-podobnyh receptorov dlya profilaktiki i lecheniya virusnyh infekcij // Medicinskaya immunologiya. 2019. T. 21. S. 397.
- O’Neill L.A., Fitzgerald K.A., Bowie A.G. The Toll-IL-1 receptor adaptor family grows to five members // Trends Immunol. 2003. № 24. P. 286−290.
- Uematsu S., Akira S. Toll-like receptors and innate immunity // J. Mol. Med. (Berl.) 2006. № 84. P. 712−725.
- Cui J., Chen Y., Wang H.Y., Wang R.F. Mechanisms and pathways of innate immune activation and regulation in health and cancer // Hum Vaccin Immunother. 2014. V.10. № 11. P. 3270−3285.