Journal Technologies of Living Systems №4 for 2019 г.
Article in number:
Known and little-known functions of angiotensin-converting enzyme
Type of article: scientific article
DOI: 10.18127/j20700997-201904-03
UDC: 57.023
Authors:

A.P. Bobkov – Resident, Department of Internal Medicine, Faculty of Base Medicine, 

Lomonosov Moscow State University

L.Ya. Frantsuzevich – Resident, Department of Internal Medicine, Faculty of Base Medicine, 

Lomonosov Moscow State University

T.N. Krasnova – Ph.D. (Med.), Associate Professor, Head of the Department of Internal Medicine, 

Faculty of Base Medicine, Lomonosov Moscow State University

L.M. Samokhodskaya – Ph.D. (Med.), Associate Professor, Head of the Department of Laboratory  Diagnostics, Medical Scientific-Educational Center of Lomonosov Moscow State University E-mail: eye93@mail.ru

Abstract:

The paper presents a survey of modern literature dedicated to different functions of the angiotensin-converting enzyme (ACE). ACE should be considered to some extent undervalued in clinical practice as a target as a diagnostic marker. ACE is a non-specific zinc-dependent membrane-bound dipeptidyl carboxypeptidase. The active center of ACE is represented by a highly conservative sequence of amino acids His-Glu-X-X-His (HEXXH). The enzyme enters in biological fluids by shedding from the cell surface. The unknown protein is called ACE-secretase is responsible for ACE shedding from the surface of a cell to biological fluids.

ACE is presented in the body by a single-domain, or testicular, and double-domain, or somatic, isoforms. Testicular and somatic ACE isoforms are transcribed from the ACE gene by alternative splicing.

The majority of physiological effects and functions of ACE are directly related to the products of enzyme-catalyzed reactions, and its low specificity allows the enzyme to be widely involved in various processes of an organism.

Currently, the role of ACE in hematopoiesis is described. Investigators detected ACE processes AcSDKP, which INHIBITS differentiation and proliferation of bone marrow stem cells. The effect of ACE on the cardiovascular system is explained effects of angiotensin2, which is a well-known product of reaction catalyzing ACE. ACE influence on the respiratory system is mediated by angiotensin-2 and bradykinin (substrates of ACE). We should also take into account the role of ACE in the processing of antigens and cell signaling because the enzyme performs these functions directly (without the participation of its reaction products).

Based on the functions of ACE, in particular, AcSDKP processing, the selective ACE N-domain inhibitor (RXP407) are developed. RXP407 has the potential to be used in clinical practice for cancer patients undergoing radiotherapy. The group of researchers quantified the degree of ACE inhibition using different substrates (ZPHL and HHL) of ACE. A new method using for detection of the conformation of the enzyme (conformational fingerprinting) has successfully described the differences of the enzyme spatial organization in tissues such as the lung, heart, prostate, immune cells, etc. Moreover, ACE conformational differences are found in the blood of patients with sarcoidosis, Gaucher's disease, and control group.

New methods and ideas of exploitation of ACE mentioned in the article are not common in clinical practice, but have serious prospects for use.

Pages: 22-34
References
  1. Agerholm-Larsen B., Nordestgaard B.G., Steffensen R., Sorensen T.I., Jensen G., Tybjaerg-Hansen A. ACE gene polymor-phism: ischemic heart disease and longevity in 10,150 individuals. A case-referent and retrospective cohort study based on the Co-penhagen City Heart Study // Circulation. 1997. V. 95. № 10. P. 2358–67.
  2. Agerholm-Larsen B., Nordestgaard B.G., Tybjaerg-Hansen A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites // Arterioscler Thromb. Vasc. Biol. 2000. V. 20. № 2. P. 484–92.
  3. Becker J.C., Houben R., Schrama D., Voigt H., Ugurel S., Reisfeld R.A. Mouse models for melanoma: a personal perspective // Exp. Dermatol. 2010. V. 19. № 2. P. 157–64.
  4. Bernstein K.E., Ong F.S., Blackwell W.L., Shah K.H., Giani J.F., Gonzalez-Villalobos R.A., Shen X.Z., Fuchs S., Touyz R.M. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme // Pharmacol. Rev. 2013. V. 65. № 1. P. 1–46.
  5. Cambien F., Poirier O., Lecerf L., Evans A., Cambou J.P., Arveiler D., Luc G., Bard J.M., Bara L., Ricard S., et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction // Nature. 1992. V. 359. № 6396. P. 641–4.
  6. Charrier S., Michaud A., Badaoui S., Giroux S., Ezan E., Sainteny F., Corvol P., Vainchenker W. Inhibition of angiotensin I-converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells // Blood. 2004. V. 104. № 4. P. 978–85.
  7. Chen Z., Deddish P.A., Minshall R.D., Becker R.P., Erdos E.G., Tan F. Human ACE and bradykinin B2 receptors form a complex at the plasma membrane // Faseb j. 2006. V. 20. № 13. P. 2261–70.
  8. Chisi J.E., Briscoe C.V., Ezan E., Genet R., Riches A.C., Wdzieczak-Bakala J. Captopril inhibits in vitro and in vivo the pro-liferation of primitive haematopoietic cells induced into cell cycle by cytotoxic drug administration or irradiation but has no effect on myeloid leukaemia cell proliferation // Br. J. Haematol. 2000. V. 109. № 3. P. 563–70.
  9. Cole J., Quach D.L., Sundaram K., Corvol P., Capecchi M.R., Bernstein K.E. Mice lacking endothelial angiotensin-converting enzyme have a normal blood pressure // Circ. Res. 2002. V. 90. № 1. P. 87–92.
  10. Cole J.M., Khokhlova N., Sutliff R.L., Adams J.W., Disher K.M., Zhao H., Capecchi M.R., Corvol P., Bernstein K.E. Mice lacking endothelial ACE: normal blood pressure with elevated angiotensin II // Hypertension. 2003. V. 41. № 2. P. 313–21.
  11. Craiu A., Akopian T., Goldberg A., Rock K.L. Two distinct proteolytic processes in the generation of a major histocompatibil-ity complex class I-presented peptide // Proc. Natl. Acad. Sci USA. 1997. V. 94. № 20. P. 10850–5.
  12. Dalbeth N., Edwards J., Fairchild S., Callan M., Hall F.C. The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis // Rheumatology (Oxford). 2005. V. 44. № 1. P. 24–31.
  13. Danilov S., Savoie F., Lenoir B., Jeunemaitre X., Azizi M., Tarnow L., Alhenc-Gelas F. Development of enzyme-linked im-munoassays for human angiotensin I converting enzyme suitable for large-scale studies // J. Hypertens. 1996. V. 14. № 6. P. 719–27.
  14. Danilov S.M., Balyasnikova I.V., Albrecht R.F., 2nd, Kost O.A. Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ACE and allows detection of inhibitors in human blood // J. Cardiovasc Pharmacol. 2008. V. 52. № 1. P. 90–103.
  15. Danilov S.M., Balyasnikova I.V., Danilova A.S., Naperova I.A., Arablinskaya N.E., Borisov S.E., Metzger R., Franke F.E., Schwartz D.E., Gachok I.V., Trakht I.N., Kost O.A., Garcia J.G. Conformational fingerprinting of the angiotensin I-converting en-zyme (ACE). 1. Application in sarcoidosis // J. Proteome Res. 2010. V. 9. № 11. P. 5782–93.
  16. Danilov S.M., Tikhomirova V.E., Kryukova O.V., Balatsky A.V., Bulaeva N.I., Golukhova E.Z., Bokeria L.A., Samokhodskaya L.M., Kost O.A. Conformational fingerprint of blood and tissue ACEs: Personalized approach // PLoS One. 2018. V. 13. № 12. P. e0209861.
  17. Danilov S.M., Tikhomirova V.E., Metzger R., Naperova I.A., Bukina T.M., Goker-Alpan O., Tayebi N., Gayfullin N.M., Schwartz D.E., Samokhodskaya L.M., Kost O.A., Sidransky E. ACE phenotyping in Gaucher disease // Mol. Genet. Metab. 2018. V. 123. № 4. P. 501–510.
  18. Davis T.A., Landauer M.R., Mog S.R., Barshishat-Kupper M., Zins S.R., Amare M.F., Day R.M. Timing of captopril admin-istration determines radiation protection or radiation sensitization in a murine model of total body irradiation // Exp. Hematol. 2010. V. 38. № 4. P. 270–81.
  19. Deddish P.A., Jackman H.L., Skidgel R.A., Erdos E.G. Differences in the hydrolysis of enkephalin congeners by the two do-mains of angiotensin converting enzyme // Biochem. Pharmacol. 1997. V. 53. № 10. P. 1459–63.
  20. Ebina M., Takahashi T., Chiba T., Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3D morphometric study // Am. Rev. Respir. Dis. 1993. V. 148. № 3. P. 720–6.
  21. Ehlers M.R., Chen Y.N., Riordan J.F. Purification and characterization of recombinant human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells // Protein. Expr. Purif. 1991. V. 2. № 1. P. 1–9.
  22. Ehlers M.R., Fox E.A., Strydom D.J., Riordan J.F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme // Proc. Natl. Acad. Sci. U S A. 1989. V. 86. № 20. P. 7741–5.
  23. Eisenlohr L.C., Bacik I., Bennink J.R., Bernstein K., Yewdell J.W. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes // Cell. 1992. V. 71. № 6. P. 963–72.
  24. Fujimura T., Yokota M., Kato S., Hirayama H., Tsunekawa A., Inagaki H., Takatsu F., Nakashima N., Yamada Y. Lack of association of angiotensin converting enzyme gene polymorphism or serum enzyme activity with coronary artery disease in Japa-nese subjects // Am. J. Hypertens. 1997. V. 10. № 12 Pt 1. P. 1384–90.
  25. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity // Nat. Rev. Immunol. 2005. V. 5. № 12. P. 953–64.
  26. Gribouval O., Gonzales M., Neuhaus T., Aziza J., Bieth E., Laurent N., Bouton J.M., Feuillet F., Makni S., Ben Amar H., Laube G., Delezoide A.L., Bouvier R., Dijoud F., Ollagnon-Roman E., Roume J., Joubert M., Antignac C., Gubler M.C. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis // Nat. Genet. 2005. V. 37. № 9. P. 964–8.
  27. Griffin S.A., Brown W.C., MacPherson F., McGrath J.C., Wilson V.G., Korsgaard N., Mulvany M.J., Lever A.F. Angioten-sin II causes vascular hypertrophy in part by a non-pressor mechanism // Hypertension. 1991. V. 17. № 5. P. 626-35.
  28. Guzik T.J., Hoch N.E., Brown K.A., McCann L.A., Rahman A., Dikalov S., Goronzy J., Weyand C., Harrison D.G. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction // J. Exp. Med. 2007. V. 204. № 10. P. 2449–60.
  29. Hoch N.E., Guzik T.J., Chen W., Deans T., Maalouf S.A., Gratze P., Weyand C., Harrison D.G. Regulation of T-cell func-tion by endogenously produced angiotensin II // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009. V. 296. № 2. P. R208–16.
  30. Johnson A.D., Newton-Cheh C., Chasman D.I., Ehret G.B., Johnson T., Rose L., Rice K., Verwoert G.C., Launer L.J., Gud-nason V., Larson M.G., Chakravarti A., Psaty B.M., Caulfield M., van Duijn C.M., Ridker P.M., Munroe P.B., Levy D. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals // Hypertension. 2011. V. 57. № 5. P. 903–10.
  31. Jokubaitis V.J., Sinka L., Driessen R., Whitty G., Haylock D.N., Bertoncello I., Smith I., Peault B., Tavian M., Simmons P.J. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues // Blood. 2008. V. 111. № 8. P. 4055–63.
  32. Jones E.S.W., Lesosky M., Blockman M., Castel S., Decloedt E.H., Schwager S.L.U., Sturrock E.D., Wiesner L., Rayner B.L. Therapeutic drug monitoring of amlodipine and the Z-FHL/HHL ratio: Adherence tools in patients referred for apparent treatment-resistant hypertension // S. Afr. Med. J. 2017. V. 107. № 10. P. 887–891.
  33. Junot C., Gonzales M.F., Ezan E., Cotton J., Vazeux G., Michaud A., Azizi M., Vassiliou S., Yiotakis A., Corvol P., Dive V. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregula-tory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin I hydrolysis // J. Pharmacol. Exp. Ther. 2001. V. 297. № 2. P. 606–11.
  34. Kehoe P.G., Passmore P.A. The renin-angiotensin system and antihypertensive drugs in Alzheimer's disease: current standing of the angiotensin hypothesis? // J. Alzheimers Dis. 2012. V. 30. Suppl 2. P. S251–68.
  35. Kintscher U., Wakino S., Kim S., Fleck E., Hsueh W.A., Law R.E. Angiotensin II induces migration and Pyk2/paxillin phos-phorylation of human monocytes // Hypertension. 2001. V. 37. № 2 Pt 2. P. 587–93.
  36. Kohlstedt K., Brandes R.P., Muller-Esterl W., Busse R., Fleming I. Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells // Circ. Res. 2004. V. 94. № 1. P. 60–7.
  37. Kohlstedt K., Kellner R., Busse R., Fleming I. Signaling via the angiotensin-converting enzyme results in the phosphorylation of the nonmuscle myosin heavy chain IIA // Mol. Pharmacol. 2006. V. 69. № 1. P. 19–26.
  38. Kohlstedt K., Shoghi F., Muller-Esterl W., Busse R., Fleming I. CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane // Circ. Res. 2002. V. 91. № 8. P. 749–56.
  39. Kondoh G., Tojo H., Nakatani Y., Komazawa N., Murata C., Yamagata K., Maeda Y., Kinoshita T., Okabe M., Taguchi R., Takeda J. Angiotensinconverting enzyme is a GPI-anchored protein releasing factor crucial for fertilization // Nat. Med. 2005. V. 11. № 2. P. 160–6.
  40. Kramers C., Danilov S.M., Deinum J., Balyasnikova I.V., Scharenborg N., Looman M., Boomsma F., de Keijzer M.H., van Duijn C., Martin S., Soubrier F., Adema G.J. Point mutation in the stalk of angiotensin-converting enzyme causes a dramatic in-crease in serum angiotensin-converting enzyme but no cardiovascular disease // Circulation. 2001. V. 104. № 11. P. 1236–40.
  41. Krege J.H., Kim H.S., Moyer J.S., Jennette J.C., Peng L., Hiller S.K., Smithies O. Angiotensin-converting enzyme gene mu-tations, blood pressures, and cardiovascular homeostasis // Hypertension. 1997. V. 29. № 1 Pt 2. P. 150–7.
  42. Kunisawa J., Shastri N. The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway // Mol. Cell. 2003. V. 12. № 3. P. 565–76.
  43. Lanz T.V., Ding Z., Ho P.P., Luo J., Agrawal A.N., Srinagesh H., Axtell R., Zhang H., Platten M., Wyss-Coray T., Steinman L. Angiotensin II sustains brain inflammation in mice via TGF-beta // J. Clin. Invest. 2010. V. 120. № 8. P. 2782–94.
  44. Leatham E., Barley J., Redwood S., Hussein W., Carter N., Jeffery S., Bath P.M., Camm A. Angiotensin-1 converting en-zyme (ACE) polymorphism in patients presenting with myocardial infarction or unstable angina // J. Hum. Hypertens. 1994. V. 8. № 8. P. 635–8.
  45. Leuschner F., Panizzi P., Chico-Calero I., Lee W.W., Ueno T., Cortez-Retamozo V., Waterman P., Gorbatov R., Marinelli B., Iwamoto Y., Chudnovskiy A., Figueiredo J.L., Sosnovik D.E., Pittet M.J., Swirski F.K., Weissleder R., Nahrendorf M. Angioten-sin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction // Circ. Res. 2010. V. 107. № 11. P. 1364–73.
  46. Linnebank M., Kesper K., Jeub M., Urbach H., Wullner U., Klockgether T., Schmidt S. Hereditary elevation of angiotensin converting enzyme suggesting neurosarcoidosis // Neurology. 2003. V. 61. № 12. P. 1819–20.
  47. Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. The chemokine system in diverse forms of macrophage activation and polarization // Trends Immunol. 2004. V. 25. № 12. P. 677–86.
  48. Marcic B., Deddish P.A., Jackman H.L., Erdos E.G., Tan F. Effects of the N-terminal sequence of ACE on the properties of its C-domain // Hypertension. 2000. V. 36. № 1. P. 116–21.
  49. McKay S., de Jongste J.C., Saxena P.R., Sharma H.S. Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1 // Am. J. Respir. Cell Mol. Biol. 1998. V. 18. № 6. P. 823–33.
  50. Millar E.A., Angus R.M., Hulks G., Morton J.J., Connell J.M., Thomson N.C. Activity of the renin-angiotensin system in acute severe asthma and the effect of angiotensin II on lung function // Thorax. 1994. V. 49. № 5. P. 492–5.
  51. Millar E.A., Nally J.E., Thomson N.C. Angiotensin II potentiates methacholine-induced bronchoconstriction in human airway both in vitro and in vivo // Eur. Respir. J. 1995. V. 8. № 11. P. 1838–41.
  52. Murakami N., Chauhan V.P., Elzinga M. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: fila-ment forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphoryla-tion sites // Biochemistry. 1998. V. 37. № 7. P. 1989–2003.
  53. Murakami N., Healy-Louie G., Elzinga M. Amino acid sequence around the serine phosphorylated by casein kinase II in brain myosin heavy chain // J. Biol. Chem. 1990. V. 265. № 2. P. 1041–7.
  54. Naftilan A.J. The role of angiotensin II in vascular smooth muscle cell growth // J. Cardiovasc. Pharmacol. 1992. V. 20 Suppl 1. P. S37–40.
  55. Nakai K., Itoh C., Miura Y., Hotta K., Musha T., Itoh T., Miyakawa T., Iwasaki R., Hiramori K. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese // Circulation. 1994. V. 90. № 5. P. 2199–202.
  56. Natesh R., Schwager S.L., Sturrock E.D., Acharya K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex // Nature. 2003. V. 421. № 6922. P. 551–4.
  57. Nesterovitch A.B., Hogarth K.D., Adarichev V.A., Vinokour E.I., Schwartz D.E., Solway J., Danilov S.M. Angiotensin I-converting enzyme mutation (Trp1197Stop) causes a dramatic increase in blood ACE // PLoS One. 2009. V. 4. № 12. P. e8282.
  58. O’Donnell C.J., Lindpaintner K., Larson M.G., Rao V.S., Ordovas J.M., Schaefer E.J., Myers R.H., Levy D. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study // Circulation. 1998. V. 97. № 18. P. 1766–72.
  59. Okunuki Y., Usui Y., Nagai N., Kezuka T., Ishida S., Takeuchi M., Goto H. Suppression of experimental autoimmune uveitis by angiotensin II type 1 receptor blocker telmisartan // Invest. Ophthalmol. Vis. Sci. 2009. V. 50. № 5. P. 2255–61.
  60. Okwan-Duodu D., Datta V., Shen X.Z., Goodridge H.S., Bernstein E.A., Fuchs S., Liu G.Y., Bernstein K.E. Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphy-lococcus aureus // J. Biol. Chem. 2010. V. 285. № 50. P. 39051–60.
  61. Platten M., Youssef S., Hur E.M., Ho P.P., Han M.H., Lanz T.V., Phillips L.K., Goldstein M.J., Bhat R., Raine C.S., Sobel R.A., Steinman L. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity // Proc. Natl. Acad. Sci. U S A. 2009. V. 106. № 35. P. 14948–53.
  62. Ramsay S.G., Dagg K.D., McKay I.C., Lipworth B.J., McSharry C., Thomson N.C. Investigations on the renin-angiotensin system in acute severe asthma // Eur. Respir. J. 1997. V. 10. № 12. P. 2766–71.
  63. Ricciardolo F.L., Timmers M.C., Sont J.K., Folkerts G., Sterk P.J. Effect of bradykinin on allergen induced increase in ex-haled nitric oxide in asthma // Thorax. 2003. V. 58. № 10. P. 840–5.
  64. Rice G.I., Thomas D.A., Grant P.J., Turner A.J., Hooper N.M. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism // Biochem. J. 2004. V. 383. № Pt 1. P. 45–51.
  65. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angio-tensin I-converting enzyme gene accounting for half the variance of serum enzyme levels // J. Clin. Invest. 1990. V. 86. № 4. P. 1343–6.
  66. Sagawa K., Nagatani K., Komagata Y., Yamamoto K. Angiotensin receptor blockers suppress antigen-specific T cell re-sponses and ameliorate collagen-induced arthritis in mice // Arthritis Rheum. 2005. V. 52. № 6. P. 1920–8.
  67. Schunkert H., Hense H.W., Holmer S.R., Stender M., Perz S., Keil U., Lorell B.H., Riegger G.A. Association between a dele-tion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy // N. Engl. J. Med. 1994. V. 330. № 23. P. 1634–8.
  68. Semmler A., Stein R.W., Caplan L., Danilov S.M., Klockgether T., Linnebank M. Hereditary hyper-ACE-emia due to the Pro1199Leu mutation of somatic ACE as a potential pitfall in diagnosis: a first family outside Europe // Clin. Chem. Lab. Med. 2006. V. 44. № 9. P. 1088–9.
  69. Shen X.Z., Billet S., Lin C., Okwan-Duodu D., Chen X., Lukacher A.E., Bernstein K.E. The carboxypeptidase ACE shapes the MHC class I peptide repertoire // Nat. Immunol. 2011. V. 12. № 11. P. 1078–85.
  70. Shen X.Z., Li P., Weiss D., Fuchs S., Xiao H.D., Adams J.A., Williams I.R., Capecchi M.R., Taylor W.R., Bernstein K.E. Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma // Am. J. Pathol. 2007. V. 170. № 6. P. 2122–34.
  71. Shen X.Z., Lukacher A.E., Billet S., Williams I.R., Bernstein K.E. Expression of angiotensin-converting enzyme changes ma-jor histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors // J. Biol. Chem. 2008. V. 283. № 15. P. 9957–65.
  72. Silva-Filho J.L., Souza M.C., Henriques M., Morrot A., Savino W., Nunes M.P., Caruso-Neves C., Pinheiro A.A. AT1 recep-tor-mediated angiotensin II activation and chemotaxis of T lymphocytes // Mol. Immunol. 2011. V. 48. № 15–16. P. 1835–43.
  73. Simpson E., Roopenian D. Minor histocompatibility antigens // Curr. Opin. Immunol. 1997. V. 9. № 5. P. 655–61.
  74. Smithies O., Kim H.S., Takahashi N., Edgell M.H. Importance of quantitative genetic variations in the etiology of hyperten-sion // Kidney Int. 2000. V. 58. № 6. P. 2265–80.
  75. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning // Proc. Natl. Acad. Sci. U S A. 1988. V. 85. № 24. P. 9386–90.
  76. Swirski F.K., Nahrendorf M., Etzrodt M., Wildgruber M., Cortez-Retamozo V., Panizzi P., Figueiredo J.L., Kohler R.H., Chudnovskiy A., Waterman P., Aikawa E., Mempel T.R., Libby P., Weissleder R., Pittet M.J. Identification of splenic reservoir mon-ocytes and their deployment to inflammatory sites // Science. 2009. V. 325. № 5940. P. 612–6.
  77. Takeuchi F., Yamamoto K., Katsuya T., Sugiyama T., Nabika T., Ohnaka K., Yamaguchi S., Takayanagi R., Ogihara T., Kato N. Reevaluation of the association of seven candidate genes with blood pressure and hypertension: a replication study and me-ta-analysis with a larger sample size // Hypertens. Res. 2012. V. 35. № 8. P. 825–31.
  78. Tikhomirova V.E., Kost O.A., Kryukova O.V., Golukhova E.Z., Bulaeva N.I., Zholbaeva A.Z., Bokeria L.A., Garcia J.G.N., Danilov S.M. ACE phenotyping in human heart // PLoS One. 2017. V. 12. № 8. P. e0181976.
  79. Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active // J. Biol. Chem. 1991. V. 266. № 14. P. 9002–8.
  80. Wei L., Alhenc-Gelas F., Soubrier F., Michaud A., Corvol P., Clauser E. Expression and characterization of recombinant human angiotensin Iconverting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes // J. Biol. Chem. 1991. V. 266. № 9. P. 5540–6.
  81. Wei L., Clauser E., Alhenc-Gelas F., Corvol P. The two homologous domains of human angiotensin I-converting enzyme in-teract differently with competitive inhibitors // J. Biol. Chem. 1992. V. 267. № 19. P. 13398–405.
  82. Williams T.A., Danilov S., Alhenc-Gelas F., Soubrier F. A study of chimeras constructed with the two domains of angioten-sin I-converting enzyme // Biochem. Pharmacol. 1996. V. 51. № 1. P. 11–4.
  83. Woodman Z.L., Schwager S.L., Redelinghuys P., Chubb A.J., van der Merwe E.L., Ehlers M.R., Sturrock E.D. Homologous substitution of ACE C-domain regions with N-domain sequences: effect on processing, shedding, and catalytic properties // Biol. Chem. 2006. V. 387. № 8. P. 1043–51.
  84. Zambidis E.T., Park T.S., Yu W., Tam A., Levine M., Yuan X., Pryzhkova M., Peault B. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells // Blood. 2008. V. 112. № 9. P. 3601–14.
  85. Kramers C., Deinum J. [Increased serum activity of angiotensin-converting enzyme (ACE): indication of sarcoidosis? A 'Bayesian' approach] // Ned. Tijdschr. Geneeskd. 2003. V. 147. № 11. P. 473–6.
  86. Skidgel R.A., Erdos E.G. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone // Proc. Natl. Acad. Sci. U S A. 1985. V. 82. № 4. P. 1025–9.
  87. Danilov S. Konformacionnyj fingeprinting s pomoshch'yu monoklonal'nyh antitel (an primere angiotenzin-prevrashchayushchego fermenta-APF) // Molekulyarnaya biologiya. 2017. T. 51. № 6. S. 1046–1061.
  88. Kuznecova T., Gavrilov D., Samohodskaya L., Rebrikov D., Morozova S., Makarevich P., Kolotvin A., Balackij A., Postnov A., Bojcov S. Associaciya klinicheskih i geneticheskih faktorov s gipertrofiej levogo zheludochka pri arteri-al'noj gipertonii // Racional'naya farmakoterapiya v kardiologii. 2010. T. 6. № 3. 
  89. Sadekova O.N., Knyazeva I., YArovaya E., Radzinskij V., Demidova E., Samohodskaya L., Tkachuk V. Rol' sistemnyh narushenij v formirovanii gestacionnyh oslozhnenij i ih geneticheskaya sostavlyayushchaya // Akusherstvo i ginekologiya. 2012. № 4–2. S. 21–28.
  90. Halford-Knyazeva I.P., Radzinskij V.E., Samohodskaya L.M., YArovaya E.B. Geneticheskie markery prognozirovaniya preeklampsii // Doktor. ru. 2013. № 7–1. S. 58–66.
Date of receipt: 5 августа 2019 г.