Journal Technologies of Living Systems №3 for 2019 г.
Article in number:
Acceleration of heart function recovery by peptide IX (29–40 MCP-1) after myocardial ischemia-reperfusion in rats
Type of article: scientific article
DOI: 10.18127/j20700997-201903-02
UDC: УДК 612
Authors:

M.R. Akhmetshina
Assistant, Department of Physiology and General Pathology, Faculty of Fundamental Medicine,
Lomonosov Moscow State University
E-mail: akhmetshinamar@gmail.com
M.P. Morozova
Ph.D. (Biol.), Assistant, Department of Physiology and General Pathology, Faculty of Fundamental Medicine,
Lomonosov Moscow State University
S.A. Gavrilova
Ph.D. (Biol.), Department of Physiology and General Pathology, Faculty of Fundamental Medicine,
Lomonosov Moscow State University
E.V. Lukoshkova
Dr.Sc. (Biol.), Research Scientist, Institute of Experimental Cardiology, Russian Cardiology
Research Complex Ministry of Health of Russia
M.V. Sidorova
Ph.D. (Chem.), Head of Laboratory, Institute of Experimental Cardiology,
Russian Cardiology Research Complex
Ministry of Health of Russia
T.L. Krasnikova
Dr.Sc. (Biol.), Institute of Experimental Cardiology, Russian Cardiology Research Complex,
Ministry of Health of Russia
V.B. Koshelev
Dr. Sc. (Biol.), Professor, Head of Department of Physiology and General Pathology,
Faculty of Fundamental Medicine,
Lomonosov Moscow State University

Abstract:

In this paper the effect of peptide IX, a structural fragment of MCP-1 (which accelerates and intensifies inflammation during early periods following ischemia-reperfusion), on the cardiac performance 72 hours and 28 days after a myocardial infarction in rats was examined. Ligation of the left coronary artery was used to model a myocardial infarction. Peptide IX (saline for control group) was administered via intracardiac injection at the time of surgery. After 2.5 hours, reperfusion was performed. Parameters of hemodynamics were evaluated 72 hours and 28 days after the operation: heart rate, mean arterial pressure, systolic and diastolic pressure in the left ventricle of the heart, indices of myocardial contractility and lusitropy at rest and in response to the administration of dobutamine. We studied changes in regulation of heart function from autonomic nervous system at rest and in response to exposure to cold prior to surgery and in cases where the peptide was administrated 24 hours, 72 hours and 28 days after ischemia-reperfusion. Peptide IX showed cardioprotective effect during early periods after the operation. In response to the administration of dobutamine heart rate reactions and myocardial contractility intensified, the lusitropy was partially restored. In the long-time period after the operation the differences between the intact control group and the peptide group were imperceptible. Thus, the acceleration of inflammation during ischemia-reperfusion due to the effect on monocytes and macrophages demonstrates an early cardioprotective effect. Further research is required to develop a concept of controlled inflammation during myocardial infarction.

Pages: 21-37
References
  1. Neri M., Riezzo I., Pascale N., Pomara C., Turillazzi E. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists // Mediators Inflamm. 2017. V. 2017. № 1. P. 1–14. DOI: 10.1155/2017/7018393.
  2. Prabhu S.D., Frangogiannis N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis // Circ Res. 2016. V. 119. № 1. P. 91–112. DOI: 10.1161/CIRCRESAHA.116.303577.
  3. Gombozhapova A., Rogovskaya Y., Shurupov V., Rebenkova M., Kzhyshkowska J., Popov S.V. et al. Macrophage activation and polarization in post-infarction cardiac remodeling // Journal of Biomedical Science. 2017. № 24. P. 1–11. DOI: 10.1186/s12929-017-0322-3.
  4. Yonggang Ma, Mouton A.J., Lindsey M.L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction // Transl Res. 2018. V. 191. P. 15–28. DOI: 10.1016/j.trsl.2017.10.001.
  5. Gentek R., Hoeffel G. The Innate Immune Response in Myocardial Infarction, Repair, and Regeneration // Adv. Exp. Med. Biol. 2017. V. 1003. P. 251–272. DOI: 10.1007/978-3-319-57613-8_12.
  6. Deshmane S.L., Kremlev S., Amini S., Sawaya B.E. Monocyte chemoattractant protein-1 (MCP-1): an overview // J. Interferon Cytokine Res. 2009. V. 29. № 6. P. 313–326.
  7. O'Connor T., Borsig L., Heikenwalder M. // Endocr. Metab. Immune Disord. Drug Targets. 2015. V. 15. № 2. P. 105–18. DOI: 10.1089/jir.2008.0027.
  8. Niu J., Jin Z., Kim H., Kolattukudy P.E. MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression // Basic Res. Cardiol. 2015. P. 110–26. DOI: 10.1007/s00395-015-0483-8.
  9. Sidorova M.V., Molokoedov A.S., Aref’eva T.I., Kukhtina N.B., Krasnikova T.L., Bespalova Zh.D., Bushuev V.N. Peptide fragments and structural analogues of chemokine MCP-1: Synthesis and effect on the MCP-1-induced migration of mononuclear cells // J. Bioorgan. Chem. 2004. V. 30. № 6. P. 523–533. DOI: 10.1023/B:RUBI.0000049768.98894.f5.
  10. Arefieva T.I., Sokolov V.O., Pylaeva E.A., Kukhtina N.B., Potekhina A.V., Ruleva N.Y., Sidorova M.V., Bespalova Zh.D., Azmuko A.A., Krasnikova T.L. The peptide fragment (29–40 amino acid sequence) of monocyte chemotactic protein-1 (MCP-1) stimulates the migration of monocytes in vivo and promotes wound healing // Dokl Biol Sci. 2012. V. 446. P. 327–330.
  11. Krasnikova T.L., Arefieva T.I., Melekhov M.G., Kukhtina N.B., Sidorova M.V., Molokoedov A.S., Bushuev V.N., Bespalova Zh.D., Chazov E.I. The peptide of sequence 66–77 of monocyte chemotactic protein-1 (MCP-1) is an inhibitor of inflammation in experimental animals // Dokl. Biol. Sci. 2005. V. 404. P. 402–405.
  12. Akhmetshina M.R., Berdalin A.B., Gavrilova S.A. Dynamics of the inflammatory response in infarcted rat myocardium in ischemia-reperfusion model. Morphometric analysis // Technologies of Living Systems. 2015. V. 12. № 1. P. 24–33. DOI: 10.13140/RG.2.1.2552.2722.
  13. Akhmetshina M.R., Berdalin A.B., Morozova M.P., Buravkov S.V., Bespalova Zh.D., Sidorova M.V., Aref’eva T.I., Krasnikova T.L., Gavrilova S.A. The influence of peptide fragments 29–40 and 65–76 of MCP-1 on the morphological characteristics of rat myocardium in ischemia-reperfusion // Ross. Fiziol. Zh. n.a. I.M. Sechenova. 2015. V.101. № 7. P. 789–803.
  14. Akhmetshina M.R., Sharova M.V., Berdalin A.B., Sidorova M.V., Gavrilova S.A. The influence of peptides IX and X, which are fragments of chemokine MCP-1, on rats weight, mortality and myocardium morphology on a model of ischemia-reperfusion // Technologies of Living Systems. 2017. V. 14. № 6. P. 48–54. PMID: 26591052.
  15. Selye H., Bajusz E., Grasso S., Mendell P. Simple techniques for the surgical occlusion of coronary vessels in the rat // Angiology. 1960. № 11. P. 398–407. DOI: 10.1177/000331976001100505.
  16. Gavrilova S., Markov M., Berdalin A., Kurenkova A., Koshelev V. Changes in Sympathetic Innervation of the Heart in Rats with Experimental Myocardial Infarction. Effect of Semax // Bulletin of Experimental Biology and Medicine. 2017. V. 163. № 5. P. 617–619. doi: 10.1007/s10517-017-3862-3.
  17. Morozova M.P., Lukoshkova E.V., Gavrilova S.A. Heart rate variability estimation features in rats // Ross. Fiziol. Zh. n.a. I.M. Sechenova. 2015. V. 101. № 3. P. 291–307.
  18. de Lemos J.A., Morrow D.A., Blazing M.A., Jarolim P., Wiviott S.D., Sabatine M.S. et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z trial // J. Am. Coll. Cardiol. 2007. № 50. P. 2117–2124. DOI: 10.1016/j.jacc.2007.06.057.
  19. Hayashidani S., Tsutsui H., Shiomi T., Ikeuchi M., Matsusaka H., Suematsu N. et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction // Circulation. 2003. № 108. P. 2134–2140. DOI: 10.1161/01.CIR.0000092890.29552.22.
  20. Kaikita K., Hayasaki T., Okuma T., Kuziel W. A., Ogawa H., Takeya M. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction // Am. J. Pathol. 2004. № 165. P. 439–447. DOI: 10.1016/S0002-9440(10)63309-3.
  21. Ma Y., Mouton A.J., Lindsey M.L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction // Transl Res. 2018. № 191. P. 15–28. DOI: 10.1016/j.trsl.2017.10.001.
  22. Morimoto H., Takahashi M., Izawa A., Ise H., Hongo M., Kolattukudy P. E., Ikeda U. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction // Circ. Res. 2006. № 99. P. 891–899. DOI: 10.1161/01.RES.0000246113.82111.2d.
  23. Dewald O., Zymek P., Winkelmann K., Koerting A., Ren G., Abou-Khamis T. et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts // Circ. Res. 2005. № 96. P. 881–889. DOI: 10.1161/01.RES.0000163017.13772.3a
  24. Chen B., Frangogiannis N.G. Macrophages in the Remodeling Failing Heart // Circ Res. 2016. V. 119. № 7. P. 776–8. DOI: 10.1161/CIRCRESAHA.116.309624.
  25. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Ischemia/Reperfusion. Compr Physiol. 2016. V. 7. № 1. P. 113–170. DOI: 10.1002/cphy.c160006.
  26. Holness C.L., Simmons D.L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins // Blood. 1993. V. 81. № 6. P.1607-13. PMID: 7680921.
  27. Cheng B., Chen H.C., Chou I.W., Tang T.W., Hsieh P.C. Harnessing the early post-injury inflammatory responses for cardiac regeneration // J. Biomed. Sci. 2017. № 24. P. 1–9. DOI: 10.1186/s12929-017-0315-2.
  28. Yano M., Ikeda Y., Matsuzaki M. Altered intracellular Ca2+ handling in heart failure // J. Clin. Invest. 2005. V. 115. № 3.
    P. 556–64. DOI: 10.1172/JCI24159.
  29. Sadredini M., Danielsen T.K., Aronsen J.M., Manotheepan R., Hougen K., Sjaastad I., Stokke M.K. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure // PLoS One. 2016. № 11. P. 1–18. DOI: 10.1371/journal.pone.0153887.
  30. Yano M., Yamamoto T., Kobayashi S., Ikeda Y., Matsuzaki M. Defective Ca2+ cycling as a key pathogenic mechanism of heart failure // Circ. J. 2008. V. 72. Suppl. A. P. A22–30.
Date of receipt: 30 мая 2019 г.