Journal Technologies of Living Systems №2 for 2019 г.
Article in number:
Peptide X, a fragment of the chemokine MCP-1, slows the onset of inflammation and decreases the heart function in rats in the model of ischemia-reperfusion
Type of article: scientific article
DOI: 10.18127/j20700997-201902-02
UDC: 571.27
Authors:

M.R. Akhmetshina

Assistant to Department, Department of Physiology and General Pathology, Faculty of Fundamental Medicine,  Lomonosov Moscow State University 

E-mail: akhmetshinamar@gmail.com

M.P. Morozova –  

Ph.D. (Biol.), Assistant to Department, Department of Physiology and General Pathology,  Faculty of Fundamental Medicine, Lomonosov Moscow State University 

E-mail: mormasha@gmail.com

E.V. Lukoshkova – 

Dr.Sc. (Biol.), Research Scientist, Laboratory of Experimental Pathology of Heart, National Medical Research Center of Cardiology of Ministries of Health of the RF (Moscow) 

E-mail: elena.lukoshkova@gmail.com

M.V. Ovchinnikov – 

Ph.D. (Chem.), Leading Research Scientist, National Medical Research Center of Cardiology  of Ministries of Health of the RF (Moscow)

M.V. Sidorova – 

Ph.D. (Chem.), Head of Laboratories of Synthesis of Peptides, National Medical Research Center of Cardiology of Ministries of Health of the RF (Moscow)

E-mail: peptide@cardio.ru

T.L. Krasnikova –  

Dr.Sc. (Biol.), National Medical Research Center of Cardiology of Ministries of Health of the RF (Moscow)  E-mail: tlkrasnikova@gmail.com

S.A. Gavrilova – 

Ph.D. (Biol.), Associate Professor, Deputy Dean of Faculty, Department of Physiology and General Pathology, Faculty of Fundamental Medicine, Lomonosov Moscow State University  E-mail: sgavrilova@mail.ru

Abstract:

Massive sudden death of cardiomyocytes after the onset of ischemia followed by reperfusion (IR) leads to the development of inflammation, which has a detrimental effect on myocardium reparation. Under conditions described the chemokine branch of inflammation plays an important role, for example, the level of chemokine MCP-1 is dramatically elevated in rats after the IR. MCP-1 in turn recruits proinflammatory monocytes into the area of necrosis, which leads to ambiguous results afterwards.  The aim of present study was to investigate the effect of the structural fragment of MCP-1 (65-76 a.a.) named Peptide X, on heart morpho-functional characteristics. Previously we showed in in vivo and in vitro models that peptide X decreased the monocyte migration into the damaged area. 

Myocardial infarction was performed on rats by left coronary artery ligation for 2,5 hours after the operation hearts were reperfused. Peptide X was administrated into the sublingual vein at a dose of 35.7 μg/kg in a volume of 200 μl/kg of rat weight immediately after ligation of the left coronary artery (IR-P-X group). The control infarction group (IR-S) was similarly injected with saline (0,9% NaCl). The functional state of the cardiovascular system was performed on anesthetized rats 72 hours and 28 days after the IR. Hemodynamic parameters were recorded in the program PowerGraph 20 minutes at rest and after the infusion of acetylcholine, dobutamine and phenylephrine in a cumulative mode each for 15 minutes. 24, 72 hours and 28 days after surgery, awaken rats were subjected to ECG recording for 20 minutes before and after the 3-minute cold test to calculate heart rate variability parameters (HRV) in the time domain. 

Animals of both groups, undergoing IR, showed a similar to each other significant decrease in almost all hemodynamic parameters at early-time and delayed period after the operation at rest in comparison to intact rats. The effect of Peptide X was observed at a response to dobutamune administration: the extent of heart rate increase was 2-times lower then in IR-S group 72 hours after the IR and 3-times lower was the elevation of relaxation index 28 days after the IR. At a long-term period the tendency to weakening of the sympathetic and parasympathetic control of the heart was observed.

The study we performed, showed that Peptide X, by slowing the onset of inflammation, reduces the contribution of the sympathetic and parasympathetic branches of the autonomic nervous system to the cardiac rhythm, decrease the response of relaxation index to dobutamine administration 28 days after ischemia-reperfusion.

Pages: 12-23
References
  1. Lu X., Kwong J.Q., Molkentin J.D., Bers D.M. Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings // Circ. Res. 2016. № 118. P. 834–841. 
  2. Konstantinidis K., Whelan R.S., Kitsis R.N. Mechanisms of cell death in heart disease // Arterioscler. Thromb. Vasc. Biol. 2012. № 32. P. 1552–562.
  3. Sciarretta S. Yee D., Ammann P., Nagarajan N., Volpe M., Frati G., Sadoshima J. Role of NADPH oxidase in the regulation of au-tophagy in cardiomyocytes // Clin Sci (Lond) 2015. V. 128. P. 387–403.832. 
  4. Oerlemans M.I., Koudstaal S., Chamuleau S.A., de Kleijn D.P., Doevendans P.A., Sluijter J.P. Targeting cell death in the reper-fused heart: Pharmacological approaches for cardioprotection // Int. J. Cardiol. 2013. № 165. P. 410–422. 
  5. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Ischemia/Reperfusion // Compr. Physiol. 2016. V. 7. № 1. P. 113–170.
  6. Prabhu S.D., Frangogiannis N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fi-brosis // Circ. Res. 2016. V. 119. № 1. P. 91–112.
  7. White G.E., Iqbal A.J., Greaves D.R. CC Chemokine Receptors and Chronic Inflammation—Therapeutic Opportunities and Phar-macological Challenges // Pharmacol. Rev. 2013. V. 65. P. 47–89.
  8. Nian M., Lee P., Khaper N., Liu P. Inflammatory cytokines and postmyocardial infarction remodeling // Circ. Res. 2004. V. 94. P. 1543–1553. 
  9. Franca C. et al. Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease // Clinical Science. 2017. V. 131. P. 1215–1224.
  10. Frodermann V., Nahrendorf M. Macrophages and Cardiovascular Health // Physiol. Rev. 2018. V. 98. № 4. P. 2523–2569. 
  11. Tapp L.D. et al. The CD14 + + CD16 + monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocar-dial Michaudinfarction // J. Thromb. Haemost. 2012. V. 10. P. 1231–1241.
  12. Bianconi V., Sahebkar A., Atkin S.L., Pirro M. The regulation and importance of monocyte chemoattractant protein-1 // Curr. Opin. Hematol. 2018. V. 25. № 1. P. 44–51.
  13. Chen B., Frangogiannis N.G. Immune cells in repair of the infarcted myocardium // Microcirculation. 2017. V. 24. № 1. P. 12305. 
  14. Chen B., Frangogiannis N.G. Macrophages in the Remodeling Failing Heart // Circ. Res. 2016. V. 119. № 7. P. 776–778.
  15. Walsh R.A. Molecular Mechanisms of Cardiac Hypertrophy and Failure // 1st. Edition. USA: CRC Press. 2005. V. 784. 
  16. Krasnikova T.L. i dr. Vliyanie peptidnogo fragmenta (65–76) S – koncevogo domena monocitarnogo hemotaksicheskogo belka-1 (MCP-1) na vzaimodejstvie MSR-1 s geparinom // DAN. 2010. T. 433. № 1. S. 559–562. 
  17. Krasnikova T.L. i dr. Ingibitor vospaleniya, peptidnyj fragment (65–76) monocitarnogo hemotaksicheskogo belka -1 (MSR-1), prepyatstvuet svyazyvaniyu MSR-1 s geparinom // Biologicheskie membrany. 2011. T. 28. № 1. S. 68–76. 
  18. Krasnikova T.L. i dr. Peptid posledovatel'nosti 66–77 monocitarnogo hemotaksicheskogo belka-1 (MCP-1) – ingibitor vospaleniya u ehksperimental'nyh zhivotnyh // Doklady RAN. 2005. T. 404. № 4. S. 551–554. 
  19. Kuhtina N.B. i dr. Vliyanie sinteticheskogo peptida 65-76 MSR-1na formirovanie neointimy posle ballonnogo povre-zhdeniya u krys // Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2008. T. 94. № 1. S. 27–36. 
  20. Sidorova M.V. i dr. Peptidnyj fragment 66–77 monocitarnogo belka-1 i ego retro-ehnantio-analog ingibiruyut migraciyu kletok in vivo i in vitro // Bioorganicheskaya himiya. 2006. T. 32. № 2. S. 161–168. 
  21. Sidorova M.V. i dr. Peptidnye fragmenty hemokina MCP-1, ih strukturnye analogi i ih vliyanie na MCP-1-oposredovannuyu migraciyu monocitarnyh kletok // Bioorganicheskaya himiya. 2004. T. 30. № 6. S. 582–593.
  22. CHazov E.I. i dr. Ingibirovanie migracii monocitov i granulocitov in vivo posledovatel'nosti 65–76 monocitarnogo hemotaksicheskogo belka-1 (MCP-1) // Doklady RAN. 2006. T. 411. № 2. S. 270–272. 
  23. Selye H., Bajusz E., Grasso S., Mendell P. Simple technique for the surgical occlusion of coronary vessel in the rat // Angiology. 1960. V. 11. № 3. P. 398–405. 
  24. Gavrilova S.A., Golubeva A.V., Lipina T.V. i dr. Kardioprotektornyj ehffekt peptidnogo preparata semaks v usloviyah ehksperimental'nogo ishemicheskogo i reperfuzionnogo povrezhdeniya miokarda // Regionarnoe krovoobrashchenie i mikro-cirkulyaciya. 2008. T. 7. № 3. S. 71–79. 
  25. Gavrilova S.A., Golubeva A.V., Lipina T.V. i dr. Protektornoe vliyanie peptida semaks na processy remodelirovaniya miokarda i razvitie serdechnoj nedostatochnosti u krys v otstavlennyj postinfarktnyj period // Rossijskij fiziologi-cheskij zhurnal im. I.M. Sechenova. 2006. № 11. S. 1305–1321.
  26. Morozova M.P., Lukoshkova E.V., Gavrilova S.A. Osobennosti ocenki variabel'nosti ritma serdca u krys // Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2015. № 3. S. 291–307. 
  27. Dewald O., Zymek P., Winkelmann K., Koerting A., Ren G., Abou-Khamis T., Michael L.H., Rollins B.J., Entman M.L., Frangogi-annis N.G. // Circ. Res. 2005. № 96. P. 881–889.
  28. Morimoto H., Takahashi M., Izawa A., Ise H., Hongo M., Kolattukudy P. E., Ikeda U. Cardiac overexpression of monocyte chemo-attractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction // Circ. Res. 2006. № 99. P.891–899.
  29. Christia P., Frangogiannis N.G. Targeting inflammatory pathways in myocardial infarction // Eur. J. Clin. Invest. 2013. V. 43. № 9. P. 986–995.
  30. Ahmetshina M.R., Berdalin A.B., Gavrilova S.A. Dinamika vospalitel'nogo otveta v infarktnom miokarde krys v modeli ishemii-reperfuzii. Morfometricheskij analiz // Tekhnologii zhivyh sistem. 2015. T. 12. № 1. S. 24–33. 
  31. Ahmetshina M.R., Berdalin A.B., Morozova M.P., Buravkov S.V., Bespalova ZH.D., Sidorova M.V., Aref'eva T.I., Krasni-kova T.L., Gavrilova S.A. Vliyanie peptidnyh fragmentov 29–40 i 65–76 MSR-1 na morfologicheskie harakteristiki miokarda krys pri ishemii-reperfuzii // Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2015. T. 101. № 7. S. 789–803. 
  32. Iskhakova M.R., SHarova M.V., Berdalin A.B., Sidorova M.V., Gavrilova S.A. Vliyanie peptidov IX i H, fragmentov he-mokina MSR-1, na izmenenie massy, smertnosti krys i morfologii miokarda v modeli ishemii-reperfuzii // Tekhnolo-gii zhivyh sistem. 2017. T. 14. № 6. S. 48–54. 
  33. Kaye D.M. et al. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure // J. Am. Coll. Cardiol. 1994. V. 23. P. 570–578. 
  34. Esler M., Jennings G., Lambert G., Meredith I., Horne M., Eisenhofer G. Overflow of catecholamine neurotransmitters to the cir-culation: source, fate, and functions // Physiol. Rev. 1990. V. 70. P. 963–985. 
  35. Bristow M. Antiadrenergic therapy of chronic heart failure: surprises and new opportunities // Circulation. 2003. V. 107. P. 1100–1102. 
  36. Konstantinidis K., Whelan R.S., Kitsis R.N. Mechanisms of cell death in heart disease // Arterioscler. Thromb. Vasc. Biol. 2012. V. 32. P. 1552–1562.
  37. Jardine D.L. et al. Decrease in cardiac output and muscle sympathetic activity during vasovagal syncope // Am. J. Physiol. Heart. Circ. Physiol. 2002. V. 282. № 5. P. H1804–1809.
  38. Jiang Y-H. et al. Cardiac dysregulation and myocardial injury in a 6-hydroxydopamine-induced rat model of sympathetic denerva-tion // PLoS One. 2015. V. 10. P. 1–19. 
  39. Ziegler K.A. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial in-farction in mice // Cardiovasc. Res. 2018. V. 114. P. 291–299. 
  40. Backs J. et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregula-tion // J. Mol. Cell. Cardiol. 2001. V. 33. P. 2001. № 33. P. 461–472. 
  41. Pieske B., Houser S.R. [Na+]i handling in the failing human heart // Cardiovasc. Res. 2003. V. 57. № 4. P. 874–886.
  42. Gray R.P., McIntyre H., Sheridan D.S., Fry C.H. Intracellular sodium and contractile function in hypertrophied human and guinea-pig myocardium // Pflugers. Arch. 2001. V. 442. № 1. P. 117–123.
  43. Wrigley B.J., Shantsila E., Tapp, L.D., Lip, G.Y. CD14 + + CD16 + monocytes in patients with acute ischaemic heart failure // Eur. J. Clin. Invest. 2013. V. 43. P. 121–130.
  44. Skrzeczynska-Moncznik J. et al. Peripheral blood CD14 high CD16 + monocytes are main producers of IL-10 // Scand. J. Immunol. 2008. V. 67. P. 152–159. 
  45. Wang J. et al. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction // Int. J. Nanomedicine. 2018. V. 13. P. 6441–6451.
  46. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity // Nat. Rev. Immunol. 2005. V. 5. № 12. P. 953–964.
Date of receipt: 28 марта 2019 г.