350 rub
Journal Technologies of Living Systems №2 for 2015 г.
Article in number:
Insuline-like growth factor system. Part 1: biosynthesis, regulation of signaling pathways in normal conditions and in malignant transformation
Authors:
Yu.S. Timofeev - Physician of Clinical Laboratory Diagnostics, Russian Cancer Research Center of N.N. Blokhin (Moscow). E-mail: timofeev_lab@mail.ru
U.R. Mamedov - Ph. D. (Med), Senior Research Scientist, Russian Canter Research Center of N. N. Blokhin
S.V. Mushtenko - Post-graduate Student, Moscow State Medical and Dental University named after A.I. Evdokimov
А.V. Маslyaev - Oncologist, Russian Canter Research Center of N. N. Blokhin
I.K. Vorotnikov - Dr. Sc. (Med.), Professor, Russian Canter Research Center of N. N. Blokhin
E.S. Gershtein - Dr. Sc. (Biol.), Professor, Russian Canter Research Center of N. N. Blokhin
Abstract:
The review presents a detailed description of insulin-like growth factor system (IGF system). We describe the molecular features of its ligands: IGF-I, IGF-II, receptors: IGF-IR, IGF-IIR, insulin receptor, hybrid receptor, regulatory proteins: IGFBPs 1-6, proteases etc. We describe the mechanisms of interaction of these components and their impact on other cellular signaling systems, like system of matrix metalloproteases. We consider a data about interaction of this cellular system with the development of malignant tumors and its role in proliferation of tumor cells, tumor growth, angiogenesis, processes of invasion and metastatis.
Pages: 36-55
References
- Salmon W.D. Jr., Daughaday W.H. A hormonally controlled serum factor which stimulates sulfatein corporation by cartilage in vitro // J. Lab. Clin. Med. 1957. V. 49 (6). R. 825-836.
- Daughaday W.H., Hall K., Raben M.S., Salmon W.D. Jr., vanden Brande J.L., van Wyk J.J.Somatomedin: proposed designation for sulphation factor // Nature. 1972. V. 235 (5333). P. 107.
- Froesch E.R., Buergi H., Ramseier E.B., Bally P., Labhart A. Antibody-suppressible and nonsuppressible insulin-like activities in human serum and their physiologic significance. An insulin as say with adipose tissue of increased precision and specificity // J. Clin. Invest. 1963. V. 42. P. 1816-1834.
- Klapper D.G., Svoboda M.E., Van Wyk J.J. Sequence analysis of somatomedin-c: confirmation of identity with insulin-like growth factor-I // Endocrinology. 1983. V. 112 (6). P. 2215-2217.
- Vardatsikos G., Sahu A., Srivastava A.K. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications // Antioxid. Redox. Signal. 2009. V. 11 (5). P. 1165-1190.
- Kostyleva O.I., Gershtejjn E.S., Digaeva M.A., Ovchinnikova L.K., Bakirkhanov S.K.Insulinopodobnye faktory rosta, ikh receptory i svjazyvajushhie belki kak patogeneticheskie faktory i potencialnye misheni terapii v onkologii // Voprosy biologicheskojj, medicinskojj, farmacevticheskojj khimii. 2009. №. 6. S. 3-8.
- Kushlinskijj N.E., Timofeev JU.S. Sistema insulinopodobnykh faktorov rosta // Voprosy biologicheskojj, medicinskojj i farmacevticheskojj khimii. 2011. № 12. S. 3-22.
- Timofeev JU.S., Kushlinskijj N.E., Babkina I.V., Kostyleva O.I., Bulycheva I.V., Kuznecov I.N., Solovev JU.N., Aliev M.D. Insulinopodobnye faktory rosta i svjazyvajushhie ikh belki u bolnykh novoobrazovanijami kostejj // Tekhnologii zhivykh sistem. 2012. № 9 (9). S. 33-37.
- Pollak M. Insulin-like growth factor-related signaling and cancer development // Recent Results Cancer Res. 2007. V 174. R. 49-53.
- Frasca F., Pandini G., Sciacca L., Pezzino V., Squatrito S., Belfiore A., Vigneri R. The role of insulin receptors and IGF-I receptors in cancer and other diseases // Arch. Physiol. Biochem. 2008. V 114 (1). R. 23-37.
- Hanahan D., Weinberg R.A. The hallmarks of cancer. The next generation // Cell. 2011. V. 144 (4). P. 646-674.
- Clemmons D.R. Value of insulin-like growth factor system markers in the assessment of growth hormone status // Endocrinol. Metab. Clin. North. Am. 2007a. V. 36 (1). P. 109-129.
- Clemmons D.R. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer // Nat. Rev. Drug. Discov. 2007b. V. 6 (10). P. 821-833.
- Gershtejjn E.S., Kushlinskijj N.E. Sovremennye predstavlenija o mekhanizmakh peredachi signalov faktorov rosta kak osnova ehffektivnojj molekuljarno-napravlennojj protivoopukholevojj terapii // Voprosy biologicheskojj, medicinskojj, farmacevticheskojj khimii. 2007. № 1. S. 4-9.
- Grimberg A. Mechanisms by which IGF-I may promote cancer // Cancer Biol. Ther. 2003. V. 2 (6). P. 630-635.
- Eppler E., Zapf1 J., Bailer N., Falkmer U.G., Falkmer S., Reinecke M. IGF-I in human breast cancer: low differentiation stage is associated with decreased IGF-I content // Eur. J. Endocrinol. 2002. V. 146 (6). P. 813-821.
- Schernhammer E.S., Holly J.M, Hunter D.J. et al.Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II // Endocr. Relat. Cancer. 2006. V. 13 (2). P. 583-592.
- Moschos S.J., Mantzoros C.S. The role of the IGF system in cancer: from basic to clinical studies and clinical applications // Oncology. 2002. V. 63 (4). P. 317-332.
- Platz E.A., Pollak M.N., Leitzmann M.F. et al. Plasma insulin-like growth factor-1 and binding protein-3 and subsequent risk of prostate cancer in the PSA era // Cancer Causes Control. 2005. V. 16 (3). P. 255-262.
- Samani A.A., Yakar S., LeRoith D. et al. The role of the IGF system in cancer growth and metastasis: overview and recent insights // Endocr. Rev. 2007. V. 28 (1). P. 20-47.
- Key T.J., Appleby P.N., Reeves GK., Roddam A.W. et al. Endogenous Hormones and Breast Cancer Collaborative Group, Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies // Lancet Oncol. 2010. V. 11 (6). P. 530-542.
- Laviola L., Natalicchio A., Giorgino F. The IGF-I signaling pathway // Curr. Pharm. Des. 2007. V. 13 (7). P. 663-669.
- Pavelić J., Matijević T., Knezević J. Biological & physiological aspects of action of insulin-like growth factor peptide family // Indian J. Med. Res. 2007. V. 125 (4). P. 511-522.
- Pollak M.N., Schernhammer E.S., Hankinson S.E.Insulin-like growth factors and neoplasia // Nat. Rev. Cancer. 2004. V. 4(7). P. 505-518.
- Heldin C.H., Ostman A. Ligand-induced dimerization of growth factor receptors: variations on the theme // Cytokine Growth Factor Rev. 1996. V. 7 (1). P. 3-10.
- Hartog H., Wesseling J., Boezen H.M. et al. The insulin-like growth factor 1 receptor in cancer: old focus, new future // Eur. J. Cancer. 2007. V. 43 (13). P. 1895-1904.
- Annunziata M., Granata R., Ghigo E. The IGF system // Acta Diabetol. 2011. V. 48(1). P. 1-9.
- Ward C.W., Garrett T.P., McKern N.M. et al. The three dimensional structure of the type I insulin-like growth factor receptor // Mol. Pathol. 2001. V. 54 (3). P. 125-132.
- De Meyts P., Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design // Nat. Rev. Drug Disc. 2002. V. 1 (10). P. 769-783.
- White M.F. IRS proteins and the common path to diabetes // Am. J. Physiol. Endocrinol. Metab. 2002. V. 283 (3). P. 413-422.
- Saltiel A., Rand Kahn C.R. Insulin signal lingand the regulation of glucose and lipid metabolism // Nature. 2001. V. 414 (6865). P. 799-806.
- Kyosseva S.V. Mitogen-activated proteinkinase signaling // Int. Rev. Neurobiol. 2004. V. 59. P. 201-220.
- Clark J.E., Sarafraz N., Marber M.S. Potential of p38 MAPK inhibitors in the treatment of ischaemic heart disease // Pharmacol. Ther. 2007. V. 116 (2). P. 192-206.
- Chang F., Steelman L.S., Lee J.T., Shelton J.G., Navolanic P.M., Blalock W.L., Franklin R.A., McCubrey J.A. Signal Transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention // Leukemia. 2003. V. 17 (7). P. 263-1293.
- Kanzaki M. Insulin receptor signals regulating GLUT4 translocation and actin dynamics // Endocr. J. 2006. V. 53 (3). P. 267-293.
- Cantley L.C. The phosphoinositide 3-kinase pathway // Science. 2002. V. 296. P. 1655-1657.
- Sale E.M., Sale G.J. Proteinkinase B: signalling roles and therapeutic targeting // Cell Mol. Life. Sci. 2008. V. 65 (1). P. 113-127.
- Nakae J., Kido Y., Accili D. Distinct and overlapping functions of insulin and IGF-I receptors // Endocr. Rev. 2001. P. 22 (6). P. 818-835.
- Clemmons D.R. Role of IGF-I in skeletal muscle mass maintenance // Trends Endocrinol. Metab. 2009. V. 20 (7). P. 349-356.
- Hadsell D.L. Genetic manipulation of mammary gland development and lactation // Adv. Exp. Med. Biol. 2004. V. 554. P. 229-251.
- Torres-Aleman I. Toward a comprehensive neurobiology of IGF-I // Dev. Neurobiol. 2010. V. 70 (5). P. 384-396.
- Llorens-Martin M., Torres-Aleman I., Trejo J.L.Mechanisms mediating brain plasticity: igf1 and adul thippocampal neurogenesis // Neuroscientist. 2009. V. 15 (2). P. 134-1489.
- Colao A. The GH-IGF-I axis and the cardiovascular system: clinical implications // Clin. Endocrinol. (Oxf). 2008. V. 69 (3). P. 347-358.
- Arnqvist H.J. The role of igf-system in vascular insulin resistance // Horm. Metab. Res. 2008. V. 40 (9). P. 588-592.
- Smith T.J. Insulin-like growth factor-iregulation of Immune function: a potential therapeutic targeting autoimmune diseases - // Pharmacol. Rev. 2010. V. 62(2). P. 199-236.
- Higashi Y., Sukhanov S., Anwar A., Shai S.Y., Delafontaine P. Igf-1, oxidative stress and atheroprotection // Trends Endocrinol. Metab. 2010. V. 21 (4). P. 245-254.
- Ren H., Yin P., Duan C. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop // J. Cell Biol. 2008. V. 82 (5). P. 979-991.
- Firth S.M., Baxter R.C. Cellular actions of the insulin-like growth factor binding proteins // Endocr. Rev. 2002. V. 23 (6). P. 824-854.
- Frystyk J. Free insulin-like growth factors - measurements and relationships to growth hormone secretion and glucose homeostasis // Growth Horm. IGF Res. 2004. V. 14. P. 337-375.
- Bach L.A., Fu P., Yang Z. Insulin-like growth factor-binding protein-6 and cancer. Clin. Sci. (Lond). 2012. V. 124 (4). P. 215-229.
- Butt A.J., Fraley K.A., Firth S.M., Baxter R.C. IGF-binding protein-3-induced growth inhibition and apoptosis do not require cell surface binding and nuclear translocation in human breast cancer cells // Endocrinology. 2002. V. 143 (7). P. 2693-2699.
- Mita K., Zhang Z., Ando Y., Toyama T., Hamaguchi M., Kobayashi S., Hayashi S., Fujii Y., Iwase H., Yamashita H.Prognostic significance of insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 expression in breast cancer // Jpn. J. Clin. Oncol. 2007. V. 37 (8). P. 575-582.
- Akkiprik M., Hu L., Sahin A., Hao X., Zhang W.The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer // BMC Cancer. 2009. V. 9. P. 103.
- Wang G.K., Hu L., Fuller G.N., Zhang W. An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility // J. Biol. Chem. 2006. V. 281 (20). P. 14085-14091.
- Durai R., Davies M., Yang W., Yang S.Y., Seifalian A., Goldspink G., Winslet M. Biology of insulin-like growth factor binding protein-4 and its role in cancer (review) // Int. J. Oncol. 2006. V. 28 (6). P. 1317-1325.
- Zhu W., Shiojima I., Ito Y., Li Z., Ikeda H., Yoshida M., Naito A.T., Nishi J., Ueno H., Umezawa A., Minamino T., Nagai T., Kikuchi A., Asashima M., Komuro I.IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis // Nature. 2008. V. 454 (7202). P. 345-349.
- Miyamoto S., Nakamura M., Yano K., Ishii G., Hasebe T., Endoh Y., Sangai T., Maeda H., Shi-Chuang Z., Chiba T.,Ochiai A.Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix // Cancer Sci. 2007. V. 98(5). P. 685-691.
- Conover C.A. Insulin-like growth factor-binding proteins and bone metabolism // Am. J. Physiol. Endocrinol. Metab. 2008. V. 294 (1). P. 10-14.
- Zhou R., Diehl D., Hoeflich A., Lahm H., Wolf E.IGF-binding protein-4: biochemical characteristics and functional consequences // J. Endocrinol. 2003. V. 178 (2). P. 177-193.
- Bale L.K., Conover C.A. Disruption of insulin-like growth factor-II imprinting during embryonic development rescues the dwarf phenotype of mice null for pregnancy-associated plasma protein-A // J. Endocrinol. 2005. V. 186 (2). P. 325-331.
- Salih D.A.M., Mohan S., Kasukawa Y., Tripathi G., Lovett F.A., Anderson N.F., Carter E.J., Wergedal J.E., Baylink D.J., Pell J.M. Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice // Endocrinology. 2005. V. 146 (2).P. 931-940.
- Mohan S., Thompson G.R., Amaar Y.G., Hathaway G., Tschesche H., Baylink D.J. ADAM-9 is an insulin-like growth factor binding protein-5 protease produced and secreted by human osteoblasts // Biochemistry. 2002. V. 41 (51). P. 15394-15403.
- Taferner A., Micutkova L., Hermann M., Jansen-Durr P., Pircher H. Purification and characterization of native human insulin-like growth factor binding protein-6 // J. Cell Commun. Signal. 2011. V. 5 (4). P. 277-289.
- Zhuang D., Ceacareanu A.C., Lin Y., Ceacareanu B., Dixit M., Chapman K.E., Waters C.M., Rao G.N., Hassid A. Nitric oxide attenuates insulin-or IGF-I-stimulated aortics mooth muscle cell motility by decree sing H2O2 levels: Essential role of cGMP // Am. J. Physiol. Heart Circ. Physiol. 2004. V. 286 (6). P. 2103-2112.
- Linseman D.A., Phelps R.A., Bouchard R.J., Le S.S., Laessig T.A., McClure M.L., Heidenreich K.A. Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granuleneurons // J. Neurosci. 2002. V. 22 (21). P. 9287-9297.
- Lin C.W., Yang L.Y., Shen S.C., Chen Y.C. IGF-I plus E2 induces proliferation via activation of ROS-dependent ERKs and JNKs in human breast carcinoma cells // J. Cell. Physiol. 2007. V. 212 (3). P. 666-674.
- Meng D., Lv D.D., Fang J. Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells // Cardiovasc. Res. 2008. V. 80 (2). P. 299-308.
- Dupont J., Pierre A., Froment P., Moreau C. The insulin-like growth factor axis in cell cycle progression // Horm. Metab. Res. 2003. V. 35 (11-12). P. 740-750.
- Fukuda R., Hirota K., Fan F., Jung Y.D., Ellis L.M., Semenza G.L. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells // J. Biol. Chem. 2002. V. 277 (41). P. 38205-38211.
- Grulich-Henn J., Ritter J., Mesewinkel S., Heinrich U., Bettendorf M., Preissner K.T. Transport of insulin-like growth factor-I across endothelial cell monolayers and its binding to the subendothelial matrix // Exp. Clin. Endocrinol. Diabetes. 2002. V. 110 (2). P. 67-73.
- Kondo T., Vicent D., Suzuma K., Yanagisawa M., King G.L., Holzenberger M., Kahn C.R. Knockout of insulin and IGF-1 receptors on vasculare endothelial cells protects against retinal neovascularization // J. Clin. Invest. 2003. V. 111 (12). P. 1835-1842.
- Tang Y., Zhang D., Fallavollita L., Brodt P.Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor // Cancer Res. 2003. V. 63(6). P. 1166-1171.
- Bjorndahl M., Cao R., Nissen L.J., Clasper S., Johnson L.A., Xue Y., Zhou Z., Jackson D., Hansen A.J., Cao Y.Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo // Proc. Natl. Acad. Sci. USA. 2005. V. 102 (43). P. 15593-15598.
- Duffy M.J., McGowan P.M., Gallagher W.M. Cancer invasion and metastasis: changing views // J. Pathol. 2008. V. 214 (3). P. 283-293.
- Malemud C.J. Matrix metalloproteinases (MMPs) in health and disease: an overview // Front Biosci. 2006. V. 11. P. 1696-1701.
- Westermarck J., Kahari V.M. Regulation of matrix metalloproteinase expression in tumor invasion // FASEB J. 1999. V. 13(8). P. 781-792.
- Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry // Circ. Res. 2003. V. 92 (8). P. 827-839.
- Fingleton B. Matrix metalloproteinases: roles in cancer and metastasis // Front Biosci. 2006. V. 11. P. 479-491.
- Sounni N.E., Noel A. Membrane type-matrix metalloproteinases and tumor progression // Biochimie. 2005. V. 87 (3-4). P. 329-342.
- Chantrain C.F., Henriet P., Jodele S.Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases // Eur. J. Cancer. 2006. V. 42(3). P. 310-318.
- Zhang D., Bar-Eli M., Meloche S., Brodt P. Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals // J. Biol. Chem. 2004. V. 279 (19). P. 19683-19690.
- Zhang D., Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI3-kinase/Akt signaling // Oncogene. 2003. V. 22 (7). P. 974-982.
- Hemers E., Duval C., Mc Caig C., Handley M., Dockray G.J., Varro A. Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications for epithetlial-mesenchymal signaling // Cancer Res. 2005. V. 65 (16). P. 7363-7369.
- Bauer T.W., Liu W., Fan F., Camp E.R., Yang A., Somcio R.J., Bucana C.D., Callahan J., Parry G.C., Evans D.B., Boyd D.D., Mazar A.P., Ellis L.M. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice // Cancer Res. 2005. V. 65 (17). P. 7775-7781.
- Gallicchio M.A., Kaun C., Wojta J., Binder B., Bach L.A. Urokinase type plasminogen activator receptor is involved in insulin-like growth factor-induced migration of rhabdomyosarcoma cells in vitro // J. Cell Physiol. 2003. V. 197 (1). P. 131-138.