350 rub
Journal Technologies of Living Systems №1 for 2014 г.
Article in number:
Fluorescent methods for the detection and investigation of low density lipoprotein low affinity binding in live cells
Authors:
M.N. Balatskaya - Junior Research Scientist, Faculty of Medicine, Moscow State University. E-mail: m.balatskaya@gmail.com
G.V. Sharonov - Ph.D. (Phys.-Math.), Senior Research Scientist, Faculty of Medicine, Moscow State University. E-mail: sharonov@gmail.com
N.N. Mamedov - Post-gradant Student, Faculty of Medicine, Lomonosov Moscow State University. E-mail: nick_el@mail.ru
Y.P. Rubtsov - Ph.D. (Chem.), Assistant Professor, Faculty of Medicine, Lomonosov Moscow State University. E-mail: yrubtsov@gmail.com
Abstract:
Elevated level of low-density lipoprotein (LDL) is the main factor in the development of atherosclerosis in humans. However the relationship between the level of lipoproteins and cellular processes that lead to the formation of atherosclerotic plaques is still not clear. T-cadherin (T-cad) is one of the receptors that is responsible for the intracellular signaling in response to LDL and its gene polymorphisms correlate with metabolic syndrome and hypertension. Therefore, the determination of T-cad binding to LDL is not only of academic interest, but may be clinically significant. For observation of the localization of T-cad in live cells, we have created a fluorescent protein chimera of T- cadherin. By using this chimera, we found that besides the plasma membrane T-cadherin is concentrated in the endoplasmic reticulum (ER). These data together with the literature speak about possible involvement of T-cad in ER stress. Created T-cadherin fluorescent chimera is a unique tool for the detection of cellular and molecular mechanisms of LDL action in live cells. We have developed a method for detecting LDL binding on the surface of live cells by flow cytometry. It is shown that the method in addition to high affinity (2 ug/ml) binding to apoB/E receptor is also possible to determine the low affinity (40 ug/ml) binding of T-cad.
Pages: 56-63
References

  1. Bochkov V. N., Tkachuk V. A., Hahn A. W., Bernhardt J., Buhler F. R., Resink T. J. Concerted effects of lipoproteins and angiotensin II on signal transduction processes in vascular smooth muscle cells // Arterioscler. Thromb. Vasc. Biol. 1993. V. 13. № 9. R. 1261-1269.
  2. Bochkov V. N., Kuzmenko Y. S., Borisova Y. L., Bühler F. R., Resink T. J. Characteristica of Low and High Density Lipoprotein binding and Lipoprotein-Induced Signaling in Quiescent Human Vascular Smooth Muscle Cells // Mol. Pharmacol. 1994. V. 45. № 2. P. 262-270.
  3. Tkachuk V., Bochkov V., Philippova M., Stambolsky D. Identification of atypical lipoprotein-binding protein from human aortic smooth muscle as T-cadherin // FEBS Lett. 1998. V. 421. P. 208-212.
  4. Ranscht B., Dours-Zimmermann M. T. T-Cadhe­rin, a Novel Cadherin Cell Adhesion Molecule in the Nervous System lacks the Conserved Cytoplasmic Region // Neuron. 1991. V. 7. P. 391-402.
  5. Vestal D. J., Ranscht B. Glycosyl phosphatidylinositol-anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion // J. Cell. Biol. 1992. V. 119. № 2. P. 451-461.
  6. Wu M., J. F., W. G., M. R. Clustering of GPI-Anchored Folate Receptor Independent of Both Cross-Linking and Association with Caveolin // J. Membrane Biol. 1997. V. 159. P. 137-147.
  7. Butikofer P., Malherbe T., Boschung M., Roditi I. GPI-anchored proteins: now you see 'em, now you don't // FASEB J. 2001. V. 15. № 2. P. 545-548.
  8. Tanaka K. A., Suzuki K. G., Shirai Y. M., Shibutani S. T., Miyahara M. S., Tsuboi H., Yahara M., Yoshimura A., Mayor S., Fujiwara T. K., Kusumi A. Membrane molecules mobile even after chemical fixation // Nat. Methods. 2010. V. 7. № 11. P. 865-866.
  9. Denzel M. S., Scimia M. C., Zumstein P. M., Walsh K., Ruiz-Lozano P., Ranscht B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice // J. Clin. Invest. 2010. V. 120. № 12. P. 4342-4352.
  10. Rubina K. A., Kalinina N. I., Parfyonova Y. V., Tkachuk V. A. T-cadherin as a receptor regulating angiogenesis and blood vessel remodeling // Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 2007. V. 1. № 1. P. 57-63.
  11. Ghosh S., Joshi M. B., Ivanov D., Feder-Mengus C., Spagnoli G. C., Martin I., Erne P., Resink T. J. Use of multicellular tumor spheroids to dissect endothelial cell-tumor cell interactions: a role for T-cadherin in tumor angiogenesis // FEBS Lett. 2007. V. 581. 23. P. 4523-4528.
  12. Hebbard L. W., Garlatti M., Young L. J., Cardiff R. D., Oshima R. G., Ranscht B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model // Cancer Res. 2008. V. 68. № 5. P. 1407-1416.
  13. Joshi M. B., Kyriakakis E., Pfaff D., Rupp K., Philippova M., Erne P., Resink T. J. Extracellular cadherin repeat domains EC1 and EC5 of T-cadherin are essential for its ability to stimulate angiogenic behavior of endothelial cells // FASEB J. 2009. V. 23. № 11. P. 4011-4021.
  14. Parker-Duffen J. L., Nakamura K., Silver M., Kikuchi R., Tigges U., Yoshida S., Denzel M. S., Ranscht B., Walsh K. T-cadherin Is Essential for Adiponectin-mediated Revascularization // J. Biol. Chem. 2013. V. 288. № 34. P. 24886-24897.
  15. Semina E. V., Rubina K. A., Rutkevich P. N., Voyno-Yasenetskaya T. A., Parfyonova Y. V., Tkachuk V. A. T-cadherin activates Rac1 and Cdc42 and changes endothelial permeability // Biochemistry (Moscow) 2009. V. 74. № 4. P. 362-370.
  16. Andreeva A. V., Han J., Kutuzov M. A., Profirovic J., Tkachuk V. A., Voyno-Yasenetskaya T. A. T-cad­herin modulates endothelial barrier function // J. Cell. Physiol. 2010. V. 223. № 1. P. 94-102.
  17. Ivanov D., Philippova M., Antropova J., Gubaeva F., Iljinskaya O., Tararak E., Bochkov V., Erne P., Resink T., Tkachuk V. Expression of cell adhesion molecule T-cadherin in the human vasculature // Histochem. Cell. Biol. 2001. V. 115. № 3. P. 231-242.
  18. Org E., Eyheramendy S., Juhanson P., Gieger C., Lichtner P., Klopp N., Veldre G., Doring A., Viigimaa M., Sober S., Tomberg K., Eckstein G., Kelgo P., Rebane T., Shaw-Hawkins S., Howard P., Onipinla A., Dobson R. J., Newhouse S. J., Brown M., Dominiczak A., Connell J., Samani N., Farrall M., Caulfield M. J., Munroe P. B., Illig T., Wichmann H. E., Meitinger T., Laan M. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations // Hum. Mol. Genet. 2009. V. 18. № 12. P. 2288-2296.
  19. Fava C., Danese E., Montagnana M., Sjogren M., Almgren P., Guidi G. C., Hedblad B., Engstrom G., Lechi A., Minuz P., Melander O. A variant upstream of the CDH13 adiponectin receptor gene and metabolic syndrome in Swedes // Am. J. Cardiol. 2011. V. 108. № 10. P. 1432-1437.
  20. Chung C. M., Lin T. H., Chen J. W., Leu H. B., Yang H. C., Ho H. Y., Ting C. T., Sheu S. H., Tsai W. C., Chen J. H., Lin S. J., Chen Y. T., Pan W. H. A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes // Diabetes. 2011. V. 60. № 9. P. 2417-2423.
  21. Morisaki H., Yamanaka I., Iwai N., Miyamoto Y., Kokubo Y., Okamura T., Okayama A., Morisaki T. CDH13 gene coding T-cadherin influences variations in plasma adiponectin levels in the Japanese population // Hum. Mutat. 2012. V. 33. № 2. P. 402-410.
  22. Rubina K., Talovskaya E., Cherenkov V., Ivanov D., Stambolsky D., Storozhevykh T., Pinelis V., Shevelev A., Parfyonova Y., Resink T., Erne P., Tkachuk V. LDL induces intracellular signalling and cell migration via atypical LDL-binding protein T-cadherin // Mol. Cell. Biochem. 2005. V. 273. № 1-2. P. 33-41.
  23. Havel R. J., Eder H. A., Bragdon J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum // J. Clin. Invest. 1955. V. 34. № 9. P. 1345-1353.
  24. Tyrberg B., Miles P., Azizian K. T., Denzel M. S., Nieves M. L., Monosov E. Z., Levine F., Ranscht B. T-cadherin (Cdh13) in association with pancreatic beta-cell granules contributes to second phase insulin secretion // Islets. 2011. V. 3. № 6. P. 327-337.
  25. Koller E., Ranscht B. Differential targeting of T- and N-cadherin in polarized epithelial cells // J. Biol Chem. 1996. V. 271. № 47. P. 30061-30067.
  26. Philippova M., Ivanov D., Tkachuk V., Erne P., Resink T. J. Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility - // Histochem. Cell. Biol. 2003. V. 120. № 5. P. 353-360.
  27. Riou P., Saffroy R., Chenailler C., Franc B., Gentile C., Rubinstein E., Resink T., Debuire B., Piatier-Tonneau D., Lemoine A. Expression of T-cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma // FASEB J. 2006. V. 20. № 13. P. 2291-2301.
  28. Andreeva A. V., Kutuzov M. A., Tkachuk V. A., Voyno-Yasenetskaya T. A. T-cadherin is located in the nucleus and centrosomes in endothelial cells // Am. J. Physiol. Cell. Physiol. 2009. V. 297. № 5. P. C1168-1177.
  29. Philippova M., Ivanov D., Joshi M. B., Kyriakakis E., Rupp K., Afonyushkin T., Bochkov V., Erne P., Resink T. J. Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival // Mol. Cell. Biol. 2008. V. 28. № 12. P. 4004-4017.
  30. Nakamura S., Takizawa H., Shimazawa M., Hashimoto Y., Sugitani S., Tsuruma K., Hara H. Mild endoplasmic reticulum stress promotes retinal neovascularization via induction of BiP/GRP78 // PLoS One. 2013. V. 8. № 3. P. e60517.
  31. Schmitz G., Bruning T., Kovacs E., Barlage S. Fluorescence flow cytometry of human leukocytes in the detection of LDL receptor defects in the differential diagnosis of hypercholesterolemia // Arterioscler. Thromb. Vasc. Biol. 1993. V. 13. № 7. P. 1053-1065.
  32. Winterhalter P. R., Lommel M., Ruppert T., Strahl S.O-Glycosylation of the noncanonical T-cadherin from rabbit skeletal muscle by single mannose residues // FEBS Lett. 2013. V. 587. № 22. P. 3715-3721.