350 rub
Journal Technologies of Living Systems №10 for 2012 г.
Article in number:
Enhanced chemiluminescence as a method of estimation of radical-producing ability of brain tissue
Authors:
A.M. Polimova, G.R. Khakimova, G.K. Vladimirov, T.V. Zhidkova, D.Yu. Izmailov, E.V. Proskurnina, M.V. Ugrumov, Yu.A. Vladimirov
Abstract:
Degeneration of brain neurons in neurodegenerative diseases, including Alzheimer's and Parkinson-s diseases, is generally explained by their damage of the cells under the action of free radicals. Meanwhile, there exist very few methods of a direct detection of radicals in isolated life cells and human and animal tissues. The chemiluminescence (CL) in the presence of the sensitizers can be one of them. The aim of this study was to develop a method of study of the radical-producing ability of brain tissue based on recording of lucigenin-sensitized chemiluminescence (CL). The CL of thin slices (300 µm thick) of two brain areas has been studied in C57BL/6 mice: of substantia nigra (SN), the localization point of the bodies of dopaminergic neurons, and striatum, the area of projection of their axons. In order to determine the possible application of the method to comparative analysis of free radical production in norm and disease, normal mice and those with toxin-induced parkinsonism have been investigated. In a chemiluminescent experiment three slices of a certain brain region were placed together into a cuvette of a chemiluminometer, stirred and aerated by air current. . CL in the presence of luminol, a well-known chemiluminescent probe sensitive to reactive oxygen species, was very weak, while the tissue CL in the presence of С-525, a sensitizer enhancing the ultraweak luminescence in the reactions of chain lipid oxidation, was not detectible at all. The lucigenin-sensitized CL was produced solely by brain sections and not by the washing solution. Not any luminescence appeared without stirring and aeration. A superoxide dismutase (SOD) mimetic and oxidative phosphorylation uncoupler 2,4-dinitrophenol inhibited CL in concentrations of 0.1 to 1.0 mM.
In experiments with intact animals, a good reproducibility of results was obtained for both the striatum and SN. The chemiluminescence intensity of these areas was shown to be different. The data of inhibitory analysis have indicated that mitochondria are the major source of SAR in the brain tissue ur preliminary results show that the method could be applied in investigations of free radical production in pathology. As a model, we used an early symptomatic stage of Parkinson's disease. Two pairs of animals (control and MPTP treated) were taken. Not any significant decrease in SAR production was observed in the experiments in spite of the fact that the amount of life neurons was reported to be severely reduced at this stage of parkinsonism. In our opinion, the developed method of of SAR detection in brain slices, where the sensitive photomultiplier is used, has an advantage over a very laborious and expensive method with the use of cooled photomatrix.
Pages: 3-13
References
- Tretter L., Sipos I., Adam-Vizi V. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease // Neurochem. Res. 2004. V. 29. № 3. P. 569-577.
- Olanow C.W., Tatton W.G. Etiology and pathogenesis of Parkinson's disease // Annu. Rev. Neurosci. 1999. V. 22. P. 123-44.
- Andersen J. Oxidative stress in neurodegeneration: cause or consequence - // Nat Med. 2004. V. 10 Suppl. P. S18-S25.
- Zhou C., Huang Y., Przedborski S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance // Ann. N. Y. Acad. Sci. 2008. V. 1147. P. 93-104.
- Halliwell B. Oxygen radicals and the nervous system // Trends. Neurosci. 1985. V. 8. P. 22-29.
- Olanow C. Oxidation reactions in Parkinson's disease // Neurology. 1990. 40. № 10. Suppl. 3. P. suppl. 32-37. Discussion 37-39.
- 7. Olanow C.A radical hypothesis for neurode-generation // Trends Neurosci. 1993. V. 16. № 11. P. 439-44.
- Lotharius J., O'Malley K. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intrace-llular dopamine oxidation. A novel mechanism of toxicity // J. Biol. Chem. 2000. V. 275. № 49. P. 38581-38588.
- Betarbet R., Sherer T., Greenamyre J. Animal models of Parkinson's disease // Bioessays. 2002. V. 24. № 4. P. 308-318.
- Retz W. Free radicals in Alzheimer's disease // J. Neural. Transm. Suppl. 1998. V. 54. P. 221-236.
- Pappolla M. Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: prevention by melatonin // J. Pineal. Res. 1999. V. 27. № 4. P. 226-229.
- McGeer P. Reactive microglia are positive for HLA-DR in the
substantia nigra of Parkinson's and Alzheimer's disease brains // Neurology.
1988. V. 38. № 8.
P. 1285-1291. - Liu B., Gao H., Hong J. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation // Environ. Health Perspect. 2003. V. 111. № 8. P. 1065-1073.
- Zhang Y. Immunohistochemical detection of ma-londialdehyde-DNA adducts in human oral mu-cosa cells // Carcinogenesis. 2002. V. 23. № 1. P. 207-211.
- Sodum R., Chung F. Structural characterization of adducts formed in the reaction of 2,3-epoxy-4-hydroxynonanal with deoxyguanosine // Chem. Res. Toxicol. 1989. V. 2. № 1. P. 23-28.
- Fairbairn D., Olive P., O'Neill K. The comet assay: a comprehensive review // Mutat. Res. 1995. V. 339. № 1. P. 37-59.
- Владимиров Ю., Проскурнина. Е. Свободные радикалы и клеточная хемилюминесценция // Успехи биологи-ческой химии. 2009. Т. 49. С. 341-388.
- Adamo A. Brain chemiluminescence and oxidative stress in
hyperthyroid rats // J. Biochem. 1989.
V. 263. № 1. P. 273-277. - Sato Y. Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice // Biochem. Biophys. Res. Commun. 2008. V. 375. № 3. P. 346-350.
- Sasaki T. Development of real-time bioradiographic system for functional and metabolic imaging in living brain tissue // Brain Res. 2006. V. 1077. № 1. P. 161-169.
- Sasaki T. Superoxide dismutase deficiency enhances superoxide levels in brain tissues during oxygenation and hypoxia-reoxygenation // J. Neurosci. Res. 2011. V. 89. № 4. P. 601-610.
- Sasaki T. Effects of aging and every-other-day feeding on the levels of oxygen radicals in rat brain slices // Neurosci Lett. 2010. V. 469. № 1. P. 84-87.
- Sasaki T. Age-related increase of reactive oxygen generation in the brains of mammals and birds: is reactive oxygen a signaling molecule to determine the aging process and life span - // Geriatr. Gerontol. Int. 2010. V. 10. Suppl 1. P. S10-S24.
- Vladimirov Y. Coumarin derivatives enhance the chemiluminescence accompanying lipid peroxidation // Free Radic. Biol. Med. 1995. V. 18. № 4. P. 739-745.
- Владимиров Ю.А., Проскурнина Е.В., Измайлов Д.Ю.Хемилюминесценция как метод обнаружения и исследования свободных радикалов в биологических системах. // Бюллютень экспериментальной биологической медицины. 2007. Приложение № 2 (Сб. научных трудов, посвященных 25-летию создания НИИ физико-химической медицины). С. 13-20.
- Владимиров Ю., Проскурина Е., Измайлов Д.Кинетическая хемилюминесценция как метод изучения реакции свободных радикалов // Биофизика. 2011. Т. 56. № 6. С. 1081-1090.
- Владимиров Ю.А., Проскурнина Е.В., Демин Е.М., Матвеева Н.С., Любицкий О.Б., Новиков А.А., Измайлов Д.Ю., Осипов А.Н., Тихонов В.П., Каган В.Е. Дигидрокверцетин (таксифолин) и другие флавоноиды как ингибиторы образования свободных радикалов на ключевых стадиях апоптоза // Биохимия. 2009. Т. 74. № 3. С. 301-307.
- Демин Е., Проскурнина Е., Владимиров Ю. Антиокси-дантное действие дигидрокверцетина и рутина в пероксидазных реакциях, катализируемых цитохро-мом с // Вестник МГУ. Сер. Химия. 2008. Т. 5. С. 354-360.
- Vladimirov Y. Quinolizin-coumarins as physical enhancers of chemiluminescence during lipid peroxidation in live HL-60 cells // Arch. Biochem. Biophys. 2000. V. 384. № 1. P. 154-162.
- Матвеева Н.С. Активированная люцигенином хемилюминесценция тканей животных // Биофизика. 2007. Т. 52. № 6. С. 1120-1127.
- Franklin K., Paxinos G. The Mouse Brain in Stereotaxic Coordinates. 3rd edition. San Diego: Academic Press. 2007.
- ХаиндраваВ.Г., КозинаЕ.А., КучерянуВ.Г., КрыжановскийГ.Н., КудринВ.С., КлодтП.Д., БочаровЕ.В., РаевскийК.С., УгрюмовМ.В. МоделированиепреклиническойираннейклиническойстадийболезниПаркинсона // Журналневрологииипсихиатрии. 2010. № 7. С. 41-47.
- Ugrumov M. Modeling of presymptomatic and symptomatic stages of parkinsonism in mice // Neuroscience. 2011. V. 181. P. 175-188.
- Sasaki T. Age-related increase of superoxide
generation in the brains of mammals and birds // Aging. Cell. 2008. V. 7. № 4. P. 459-469. - Omata N. Hypoxic but not ischemic neurotoxicity of free radicals revealed by dynamic changes in glucose metabolism of fresh rat brain slices on positron autoradiography // J. Cereb. Blood Flow Metab. 2000. V. 20. № 2. P. 350-358.
- Kondo Y. Vitamin C depletion increases superoxide generation in brains of SMP30/GNL knockout mice // Biochem. Biophys. Res. Commun. 2008. V. 377. № 1. P. 291-296.
- Ohara Y., Peterson T., Harrison D. Hypercho-lesterolemia increases endothelial superoxide anion production // J. Clin. Invest. 1993. V. 91. № 6. P. 2546-2551.
- Davies G. Mucosal reactive oxygen metabolite production in
duodenal ulcer disease // Gut. 1992.
V. 33. № 11. P. 1467-1472. - Davies G. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo // Gut. 1994. V. 35. № 2. P. 179-185.
- Frederiks W., Vreeling-Sindelarova H. Ultra-structural localization of xanthine oxidore-ductase activity in isolated rat liver cells // Acta Histochem. 2002. V. 104. № 1. P. 29-37.
- van Manen H. Single-cell optical imaging of the phagocyte NADPH oxidase // Antioxid. Redo.xSignal. 2006. V. 8. № 9-10. P. 1509-1522.
- Хакимова Г.Р., Козина Е.А., Сапронова А.Я., Угрюмов М.В.Синтез дофамина в нигростриатной системе на досимптомной и ранней симптомной с