350 rub
Journal Technologies of Living Systems №8 for 2011 г.
Article in number:
Contents Modeling of Parkinsonism in Mice with MPTP: from Early Presymptomatic to Advanced Symptomatic Stage
Authors:
M.V. Ugrumov, E.A. Kozina, V.G. Khaindrava, V.G. Kucheryanu, E.V. Bocharov, G.N. Kryzhanovsky, V.S. Kudrin, V.B. Narkevich, P.M. Klodt, K.S. Rayevsky
Abstract:
A degradation of the nigrostriatal dopaminergic system is the key component of pathogenesis of Parkinson-s disease. Initial clinical symptoms appear many years after the onset of neurodegeneration, at a 70% dopamine depletion in the striatum and a 50% loss of nigral dopaminergic neurons. Therefore, the development of preclinical diagnostics and preventive therapy of Parkinson-s disease aiming to shut down or at least to slow down the neurodegenerative process and activation of compensatory processes is an issue of the highest priority. The development of appropriate experimental models of Parkinson-s disease should precede clinical trials. This multidisciplinary study first managed to model in mice with neurotoxin precursor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) all together the following stages of parkinsonism: (a) the early presymptomatic stage manifested by a subthreshold degeneration of axons and dopamine depletion in the striatum without loss of nigral cell bodies; (b) the advanced presymptomatic stage manifested by a subthreshold degeneration of striatal axons and dopamine depletion and by a subthreshold loss of nigral cell bodies; (c) the early symptomatic stage characterized by threshold depletion of striatal dopamine and a loss of dopaminergic axons and nigral cell bodies resulting in motor dysfunction. Compensatory processes were developed in parallel to neurodegeneration that was manifested by the increase of the dopamine content in individual nigral cell bodies and dopamine turnover in the striatum. The developed models might be exploited for: (a) an examination of pathogenetic mechanisms not only in the nigrostriatal system but also in other brain regions and in the periphery; (b) a study of the compensatory mechanisms under dopamine deficiency; (c) a search of precursors of motor disorders and peripheral biomarkers in presymptomatic parkinsonism; (d) the development of preventive therapy aiming to slow down the neurodegeneration and strengthen compensatory processes
Pages: 3-14
References
  1. Козина Е.А., Хаиндрава В.Г., Кудрин В.С., Кучеряну В.Г., Клодт П.Д., Бочаров Е.В., Раевский К.С., Крыжановский Г.Н., Угрюмов М.В.  Экспериментальное моделирование функциональной недостаточности нигростриатной дофаминергической системы у мышей // Российский физиологический журнал им. И.М. Сеченова. 2010. Т. 96. № 3. С. 270-282.
  2. Угрюмов М.В. Новые представление о патогенезе, даигностике и лечении нейродегенеративных заболеваний // Вестник РАМН. 2010. № 8. С. 6-19.
  3. Abercrombie M. Estimation of nuclear population from microtome sections // Anat. Res. 1946. V.94. Р. 239-247.
  4. Agid Y. Parkinson's disease: pathophysiology // Lancet. 1991. V. 337. P. 1321-1324.
  5. Beltramo M., Calas A., Chernigovskaya E., Borisova N., Polenova O., Tillet Y., Thibault J., Ugrumov M. Postnatal development of the suprachiasmatic nucleus in the rat. Morpho-functional characteristics and time course of tyrosine hydroxylase immunopositive fibers // Neuroscience. 1994. V. 63. P. 603-610.
  6. Bergstrom B.P., Garris P.A. "Passive stabilization" of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson's disease: a voltammetric study in the 6-OHDA-lesioned rat // J. Neurochem. 2003. V. 87. P. 1224-1236.
  7. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations // J. Neurol. Sci. V. 197320. P. 415-455.
  8. Bezard E., Gross C.E. Compensatory mecha-nisms in experimental and human parkinso-nism: towards a dynamic approach // Prog. Neurobiol. 1998. V. 55. P. 93-116.
  9. Bezard E., Jaber M., Gonon F., Boireau A., Bloch B., Gross C.E. Adaptive changes in the nigrostriatal pathway in response to increased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration in the mice // Eur. J. Neurosci. 2000. V. 12. P. 2892-2900.
  10. Bezard E., Gross C.E., Brotchie J.M. Presymptomatic compensation in Parkinson-s disease is not dopamine-mediated // Trends Neurosci. 2003. V. 26. P. 215-221.
  11. Bezard E. Neuroprotection for Parkinson's disease: clinically driven experimental design in non-human primates // Parkinson's disease: molecular and therapeutic insights from model systems (R. Nass and S. Przedborski, eds). Amsterdam: Elsevier. 2008. P. 65-76.
  12. Boulet S., Mounayar S., Poupard A., Bertrand A., Jan C., Pessiglione M., Hirsch E.C., Feuerstein C., Francois C., Feger J., Savasta M., Tremblay L. Behavioral recovery in MPTP-treated monkeys: neurochemical mechanisms studied by intrastri-atal microdialysis // J. Neurosci. . 2008. V. 28. P.9575-9584.
  13. Gerlach M., Riederer P. Animal models of Parkinson's disease: an empirical comparison with the phenomenology of the disease in man // J. Neural. Transm. 1996. V. 103. P. 987-1041.
  14. Gibrat C., Saint-Pierre M., Bousquet M., Levesque D., Rouillard C., Cicchetti F. Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions // J. Neurochem. 2009. V. 109. P. 1469-1482.
  15. Greenwood C.E., Tatton W.G., Seniuk N.A., Biddle F.G. Increased dopamine synthesis in aging substantia nigra neurons // Neurobiol. Aging. 1991. V. 12. P. 557-565.
  16. Herkenham M., Little M.D., Bankiewicz K., Yang S.C., Markey S.P., Johannessen J.N. Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: an in vivo autoradiographic study // Neuroscience. 1991. V. 40. P. 133-158.
  17. Jackson-Lewis V., Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease // Nat. Protoc. 2007. V. 2. P. 141-151.
  18. Kryzhanovsky G.N., Kucheryanu V.G., Krupina N.A., Pozdnyakov O.M., Kladkevich E.B., Nikushkin E.V., Oomura Y. Еffects of fibroblast growth factors on MPTP-induced parkinsonian syndrome in mice // Рathophysiology. 1997. V. 4. P. 59-67.
  19. Linder J.C., Klemfuss H., Groves P.M. Acute ultrastructural and behavioral effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice // Neurosci. Lett. 1987. V. 82. P. 221-226.
  20. Markey S.P., Johannessen J.N., Chiueh C.C., Burns R.S., Herkenham M.A. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism // Nature. 1984. V. 311. P.464-467.
  21. Marras C., Tanner C.M. Epidemiology of Parkinson-s disease.// In: Movement Disorders. Neurological Principals & Practice / R.L. Watts and W.C. Koller (eds.).  New York: McGraw-Hill. 2004. P. 177-195,
  22. Maruyama W., Abe T., Tohgi H., Naoi M. An endogenous MPTP-like dopaminergic neurotoxin, N-methyl(R)salsolinol, in the cerebrospinal fluid decreases with progression of Parkinson's disease // Neurosci. Lett. 1999. V. 262. P. 13-16.
  23. McCallum S.E., Parameswaran N., Perez X.A., Bao S., McIntosh J.M., Grady S.R., Quik M. Compensation in pre-synaptic dopaminergic function following nigrostriatal damage in primates // J. Neurochem. 2006. V. 96. P. 960-972.
  24. Nakahara T., Yamamoto T., Endo K., Kayama H. Neuronal ectopic expression of tyrosine hydroxylase in the mouse striatum by combined 167 administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 3- nitropropionic acid // Neuroscience. 2001. V. 108. P. 601-610.
  25. Nakazato T., Akiyama A. Differential time courses of exogenous 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine and its metabolite MPP+ in the rat striatum and nucleus accumbens measured using in vivo voltammetry // Brain. Res. 1998. V. 812. P. 150-156.
  26. Naoi M., Maruyama W., Dostert P., Hashizume Y. N-methyl-(R)salsolinol as a dopaminergic neurotoxin: from an animal model to an early marker of Parkinson's disease // J. Neural. Transm. 1997. Suppl. 50. P. 89-105.
  27. Paxinos G., Franklin K. The mouse brain in stereotaxic coordinates. 2nd Edition. London: Academic Press. 2001.
  28. Petroske E., Meredith G.E., Callen S., Totterdell S., Lau Y.S. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment // Neuro¬science. 2001. V. 106. P. 589-601.
  29. Petzinger G.M., Quik M., Ivashina E., Jakowec M.W., Jakubiak M., Di Monte D., Langston J.W. Reliability and validity of a new global dyskinesia rating scale in the MPTP-lesioned non-human primate // Mov. Disord. 2001. V. 16. P. 202-207.
  30. Petrucelli L., Dickson D. Neuropathology of Parkinson's disease // Parkinson's disease: molecular and therapeutic insights from model systems (R. Nass and S. Przedborski, eds). Amsterdam: Elsevier. 2008. P. 35-48.
  31. Raff M.C., Whitmore A.V., Finn J.T. Axonal self-destruction and neurodegeneration // Science. 2002. V. 296. P. 868-871.
  32. Riederer P., Wuketich S. Time course of nigrostriatal degeneration in parkinson's disease. A detailed study of influential factors in human brain amine analysis // J. Neural. Transm. 1976. V. 38. P.277-301.
  33. Ries V., Silva R.M., Oo T.F., Cheng H.C., Rzhetskaya M., Kholodilov N., Flavell R.A., Kuan C.Y., Rakic P., Burke R.E. JNK2 and JNK3 combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are not required for axon degeneration // J. Neurochem. 2008. V. 107. P.1578-1588.
  34. Rousselet E., Joubert C., Callebert J., Parain K., Tremblay L., Orieux G., Launay J.M., Cohen-Salmon C., Hirsch E.C. Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice // Neurobiol. Dis. 2003. V. 14. P.218-228.
  35. Schmidt N., Ferger B. Neurochemical findings in the MPTP model of Parkinson's disease //J. Neural. Transm. 2001. V. 108. P. 1263-1282.
  36. Schneider J., Anderson D., Decamp E. Neuropathology of Parkinson's disease // Parkin¬son's disease: molecular and therapeutic insights from model systems (R. Nass and S. Przedborski, eds). Amsterdam: Elsevier. 2008. P. 87-104.
  37. Scholtissen B., Verhey F.R., Steinbusch H.W., Leentjens A.F. Serotonergic mechanisms in Parkinson's disease: opposing results from preclinical and clinical data // J. Neural. Transm. 2006. V. 113. P. 59-73.
  38. Sedelis M., Schwarting R.K., Huston J.P.  Behavioral phenotyping of the MPTP mouse model of Parkinson's disease // Behav. Brain. Res. 2001. V. 125. P. 109-125.
  39. Sossi V., de La Fuente-Fernandez R., Holden J.E., Doudet D.J., McKenzie J., Stoessl A.J., Ruth T.J. Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18 F-fluorodopa data // J. Cereb. Blood Flow Metab. 2002. V. 22. P. 232-239.
  40. Tillerson J.L., Caudle W.M., Reveron M.E., Miller G.W. Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine // Exp. Neurol. 2002. V. 178. P. 80-90.
  41. Ugrumov M.V. Brain neurons partly expressing monoaminergic phenotype: distribution, development, and functional significance in norm and pathology // Handbook of neurochemistry and molecular neurobiology (A. Lajtha, ed), Neurotransmitter systems (S. Vizi, ed). New York: Springer. 2008. P. 21-73.
  42. Ugrumov M.V. Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance // J. Chem. Neuroanat. 2009. V. 38. P. 241-256.
  43. Zigmond M.J. Do compensatory processes underlie the preclinical phase of neurodegenerative disease - Insights from an animal model of parkinsonism // Neurobiol. Dis. 1997. V. 4. P. 247-253.
  44. Winter Y., von Campenhausen S., Popov G., et al. Costs of illness in a russian cohort of patients with Parkinson-s disease // Pharmacoeconomics. 2009. V. 27. P. 571-584.