350 rub
Journal Technologies of Living Systems №5 for 2011 г.
Article in number:
HYALURONIDASE TEST IN VIVO FOR DETERMINATION OF ENDOTHELIAL GLYCOCALYX PARTICIPATION IN MICROCIRCULATION DISTURBANCES
Authors:
A.D. Turashev, A.A. Fedorovich, E.G. Tischenko, A.N. Rogoza, A.V. Maksimenko
Abstract:
Normally, the surface of vascular endothelial covers a multicomponent system - endothelial glycocalyx - which, due to its complexity and location, involved in a number of functions that support the metabolism of the circulation. In pathological conditions there is a complete or partial loss of this structure, which leads to disintegration of the vascular wall and change its function. This situation could be a possible cause of the defeat of the microcirculation that can complicate the effects achieved by the standard therapy in the management of patients with cardiovascular abnormalities. An example of such multifactorial pathological processes appears the phenomenon of no-reflow, the resulting one-quarter of patients with acute myocardial infarction with ST-segment elevation on ECG. Glycosidase enzymes are involved in the catabolism of structural components of the endothelial glycocalyx - glycosaminoglycans. Due to this fact enzymes of this type are an effective tool for studying the function glycocalyx in normal and pathological conditions. The functioning of these enzymes occurs in a microenvironment of a saccharides (sugar of blood with low molecular weight and glycosaminoglycans and glycocalyx), which regulate their structure and specific activity, including the expense of the process of protein glycation. Under glycation covalent modification of the protein structure occurs with aldosaccharides (including glycosidases involved in the catabolism of glycocalyx. Therefore the study of behavior under the action on glycosidase enzymes with glycation agents of different nature and development of approaches to stabilize their enzymatic activity are reasonable as to study the functioning of the glycocalyx in a model of pathology and to develop therapeutic approaches for the treatment of diseases associated with disruption of the functioning of the vascular wall. Earlier in our studies have shown that covalent modification of one of these glycosidase - bovine testicular hyaluronidase - with chondroitin sulfate changed in the opposite way glycation nature of native and modified enzyme. Mono-and di-saccharides strongly inactivated native hyaluronidase than the modified chondroitin sulfate. Glycation with N-acetylgalactosamine gave the opposite picture: a modified hyaluronidase inactivated more native. Such properties transformed native and modified hyaluronidase enzyme into an informative research test in vivo for determination of the dominant species of glycation agents in the bloodstream and their origin: increased content of sugars in the blood in disorder of carbohydrate metabolism or growth products of glycocalyx degradation in disturbances of the microcirculation (ischemia / reperfusion, embolization, inflammation, etc.). In the model of postischemic perfusion of rat limbs we assessed recovery of microcirculation perfusion of hind limb to its initial level by using the laser Doppler flowmetry with the enzyme derivatives and their components. Native hyaluronidase accelerated recovery of the initial level of microcirculation, and the modified enzyme is expressed inhibited glycocalyx degradation products. Resulting from the administration of assayed derivatives with various schemes, the investigated data indicate the dominant presence of glycocalyx degradation products in the microcirculation after ischemic exposure, identified by the nature of the restoration of skin perfusion in the presence of modified hyaluronidase. These findings point to the direction of further work on the enzymatic regulation of microvascular glycocalyx state and development of new therapeutic approaches for the treatment of microcirculation complications in acute cardiovascular injuries.
Pages: 29-42
References
  1. Maes A., Van de Werf F., Nuyts J., Bormans G., Desmet W., Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis. Impact on myocardial flow, metabolism, and function at late follow-up // Circulation. 1995. V. 92. № 8. P. 2072-2078.
  2. Roe M.T., Ohman E.M., Maas A.C., Christenson R.H., Mahaffey K.W., Granger C.B., Harrington R.A., Califf R.M., Krucoff M.W. Shifting the open-artery hypothesis downstream: the quest for optimal reperfusion // J. Am. Coll. Cardiol. 2001. V. 37. № 1. P. 9-18.
  3. Miura T., Miki T. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy // Basic Res. Cardiol. 2008. V. 103. № 6. P. 501-513.
  4. Wilson G.J., Diaz R.J. The myocardial no-reflow phenomenon: role of deltaPKC // Cardiovasc. Res. 2007. V. 73. № 4. P. 623-625.
  5. Abbate A., Bussani R., Sinagra G., Barresi E., Pivetta A., Perkan A., Hoke N.H., Salloum F.N., Kontos M.C., Biondi-Zoccai G.G., Vetrovec G.W., Sabbadini G., Baldi F., Silvestri F., Kukreja R.C., Baldi A. Right ventricular cardiomyocyte apoptosis in patients with acute myocardial infarction of the left ventricular wall // Am. J. Cardiol. 2008. V. 102. № 6. P. 658-662.
  6. Rehm M., Bruegger D., Christ F., Conzen P., Thiel M., Jacob M., Chappell D., Stoeckelhuber M., Welsch U., Reichart B., Peter K., Becker B.F.Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia // Circulation. 2007. V. 116. № 17. P. 1896-1906.
  7. Bruegger D., Rehm M., Jacob M., Chappell D., Stoeckelhuber M., Welsch U., Conzen P., Becker B.F. Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts // Crit. Care. 2008. V. 12. № 3. P. R73-R83.
  8. Brevetti G., Schiano V., Chiariello M. Endothelial dysfunction: a key to the pathophysiology and natural history of peripheral arterial disease - // Atherosclerosis. 2008. V. 197. № 1. P. 1-11.
  9. Максименко А.В., Турашев А.Д. Гликокаликс и его фрагменты в функционировании микроциркуляции // Регионарное кровообращение микроциркуляции. 2009. Т. 8. № 3. С. 4-13.
  10. Максименко А.В., Турашев А.Д., Тищенко Е.Г. Подходы к регуляции углеводного покрытия люминальной поверхности сосудистой стенки для коррекции патофизиологических процессов // Молекулярная медицина. 2008. № 2. С. 12-17.
  11. Максименко А.В., Щечилина Ю.В., Тищенко Е.Г. Гликозаминогликановое микроокружение гиалуронидазы в регуляции ее эндогликозиданой активности // Биохимия. 2003. Т. 68. № 8. С. 1055-1062.
  12. Турашев А.Д., Тищенко Е.Г., Максименко А.В. Гликирование нативной и модифицированной хондроитинсульфатом гиалуронидазы моносахаридами // Молекулярная медицина. 2009. № 3. С. 51-56.
  13. Турашев А.Д., Тищенко Е.Г., Максименко А.В. Неферментативное гликозилирование нативной и модифицированной хондроитинсульфатом гиалуронидазы дисахаридами // Молекулярная медицина. 2009. № 6. С. 50-55.
  14. Турашев А.Д., Тищенко Е.Г., Максименко А.В. Электростатические взаимодействия при гликировании гиалуронидазных производных N-ацетилгексозаминами // Биомедицинская химия. 2011. (в печати).
  15. Максименко А.В. Эффекты гликозаминогликанов в сосудистых событиях // Химико-фарма­цевтический журнал. 2008. Т. 42. № 10. С. 3-13.
  16. Максименко А.В., Щечилина Ю.В., Тищенко Е.Г. Модифицированная декстраном гиалуронидаза резистентна к ингибированию гепарином // Биохимия. 2001. Т. 66. № 4. С. 563-572.
  17. Humeau A., Koïtka A., Abraham P., Saumet J.L., L'Huillier J.P. Time-frequency analysis of laser Doppler flowmetry signals recorded in response to a progressive pressure applied locally on anaesthetized healthy rats // Phys. Med. Biol. 2004. V. 49. № 5. P. 843-857.
  18. Li Z., Tam E.W., Kwan M.P., Mak A.F., Lo S.C., Leung M.C. Effects of prolonged surface pressure on the skin blood flowmotions in anaesthetized rats--an assessment by spectral analysis of laser Doppler flowmetry signals // Phys. Med. Biol. 2006. V. 51. № 10. P. 2681-2694.
  19. Bijnens B., Sutherland G.R. Myocardial oedema: a forgotten entity essential to the understanding of regional function after ischaemia or reperfusion injury // Heart. 2008. V. 94. № 9. P. 1117-1119.
  20. Jaffe R., Charron T., Puley G., Dick A., Strauss B.H. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention // Circulation. 2008. V. 117. № 24. P. 3152-3156.
  21. Hudetz A.G., Wood J.D., Biswal B.B., Krolo I., Kampine J.P. Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network // J. Appl. Physiol. 1999. V87. № 2. P. 505-509.
  22. Крупаткин А.И., Сидоров В.В. Лазерная допплеровская флоуметрия микроциркуляции крови. М.: Медицина. 2005. 254 с.
  23. Funk W., Intaglietta M. Spontaneous arteriolar vasomotion // Prog. Appl. Microcirc. 1983. V. 3. P. 66-82.
  24. Kastrup J., Bulow J., Lassen N.A. Vasomotion in human skin before and after local heating recorder with laser Doppler flowmetry // Int. J. Microcirc. 1989. V.8. P. 205-215.
  25. Крупаткин А.И. Динамический колебательный контур регуляции капиллярной гемодинамики // Физиология человека. 2007. Т. 33. № 5. С. 95-103.
  26. Kvernmo H.D., Stefanovska A., Kirkeboen K.A. et al. Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators // Microvasc. Res. 1999. V. 57. P. 298-309.
  27. Mulivor A.W., Lipowsky H.H. Inflammation- and ischemia-induced shedding of venular glycocalyx // Am. J. Physiol. Heart Circ. Physiol. 2004. V. 286. № 5. P. H1672-H1680.
  28. Platts S.H., Linden J., Duling B.R. Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation // Am. J. Physiol. Heart Circ. Physiol. 2003. V. 284. № 6. P. H2360-H2367.
  29. Stevens A.P., Hlady V., Dull R.O. Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx // Am. J. Physiol. Lung Cell Mol. Physiol. 2007. V. 293. № 2. P. L328-L335.
  30. Cabrales P., Vázquez B.Y., Tsai A.G., Intaglietta M.Microvascular and capillary perfusion following glycocalyx degradation // J. Appl. Physiol. 2007. V. 102. № 6. P. 2251-2259.
  31. Tarbell J.M. Shear stress and the endothelial transport barrier // Cardiovasc. Res. 2010. V. 87. P. 320-330.
  32. Vanhoutte P.M. How we learned to say NO // Arterioscler. Thromb. Vasc. Biol. 2009. V. 29. № 8. P. 1156-1160.
  33. Edwards D.H., Li Y., Griffith T.M. Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization // Arterioscler. Thromb. Vasc. Biol. 2008. V. 28. № 10. P. 1774-1781.
  34. Liu Y., Gutterman D.D. Endothelial cytoskeletal elements are critical for flow-mediated dilation in human coronary arterioles // Med. Biol. Eng. Comput. 2008. V. 46. № 5. P. 469-478.
  35. Graier W.F., Hecker M. Endothelial H2O2: a bad guy turning good - // Arterioscler. Thromb. Vasc. Biol. 2008. V. 28. № 10. P. 1691-1693.
  36. Maksimenko A.V. Experimental antioxidant biotherapy for protection of the vascular wall by modified forms of superoxide dismutase and catalase // Curr. Pharm. Des. 2005. V. 11. № 16. P. 2007-2016.
  37. Camaioni A., Hascall V.C., Yanagishita M., Salustri A. Effects of exogenous hyaluronic acid and se-
    rum on matrix organization and stability in the mouse cumulus cell-oocyte complex // J. Biol. Chem. 1993. V. 268. № 27. P. 20473-20481.
  38. Becker B.F., Chappell D., Bruegger D., Annecke T., Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential // Cardiovasc. Res. 2010. V. 87. № 2. P. 300-310.