350 rub
Journal Technologies of Living Systems №4 for 2011 г.
Article in number:
ALZHEIMER-S DISEASE: ANIMAL MODELS AS AN APPROACH TO STUDYING NEW PATHOGENETIC ASPECTS
Authors:
M.Yu. Stepanichev, N.V. Gulyaeva
Abstract:
Alzheimer-s disease (AD) is neurodegenerative disorder associated with dementia, which is mani-fested in the late age. AD is associated with neuronal death mostly expressed in populations of cholinergic neurons. However, mechanisms of neuronal death remain to be obscure. One of the central events in AD pathogenesis is excessive accumulation of amyloid-β peptide (Aβ) in the brain tissue. Aβ consists of 40-42 amino acids. There are two principal ways leading in an excess of Aβ in the brain: 1) impairments of metabolism of the amyloid precursor protein; 2) impairments of Aβ proteolysis. The peptide can form fibrils with toxic effects for brain cells, and may be deposited in the tissue as insoluble plaques. Several laboratories have demonstrated that during aging, race-mization of Aβ takes place in senile plaques. Substitution of L-serine in the 26th residue for D-serine results in solubility of this protein and makes it available for proteolysis by endogenous brain proteases. After this, a shorter peptide [D-Ser26] Aβ(25/26-35) is formed. It is capable more rapidly to form small cell permeable aggregates, which are more toxic as compared to the maternal peptide. Aβ including an 11-amino-acid peptide Aβ(25-35) may be used for modeling of AD at laboratories. Administration of Aβ(25-35) into rodent brain results in impairments of memory and death of neurons in brain regions playing an important role in cognitive processes. Interestingly, short-term memory is more vulnerable to Aβ whereas long-term memory remains to be more tol-erant. Memory impairments observed after injection of Aβ(25-35) may be a consequence of Aβ(25-35)-induced cholinergic deficit or cell death in the hippocampus and neocortex. Among the mech-anisms mediating neuronal death after application of Aβ(25-35) we can primarily indicate oxidative stress-related processes, i.e. excessive generation and/or impaired elimination of active forms of oxygen and nitrogen. Thus, studies of processes underlying effects of Aβ(25-35) in animal brain allow to reproduce specific features of AD pathogenesis. Analysis of data on in vivo studies show that an 11-amino-acid peptide Aβ(25-35) is one of the crucial players in a pathogenetic AD cascade. Models based on application of Aβ(25-35) are very promising for investigation of AD pathogenetic mechanisms related to amyloid toxicity.
Pages: 3-14
References
  1. Гаврилова С.И.Фармакотерапия болезни Альцгеймера. М.: Пульс. 2007.
  2. Журавин И.А., Дубровская Н.М., Кочкина Е.Г. и др. Исследование действия гипоксии на развитие функций мозга и метаболизм амилоидного пептида с целью разработки средств ранней диагностики и профилактики болезни Альцгеймера // Технологии живых систем. 2007. № 5-6. С. 109-123.
  3. ГуляеваН.В.Неапоптотические функции каспазы 3 в нервной ткани // Биохимия. 2003. Т. 68. С. 1459-1470.
  4. Каминский Ю.Г., Венедиктова Н.И., Соломадин И.Н. и др. Протеолитические ферменты в митохондриях, ядрах, лизосомах и цитозоле неокортекса, мозжечка и гиппокампа крыс после введения бета-амилоида // Биологические мембраны. 2007. Т. 24. № 6. С. 479-489.
  5. Косенко Е.А., Каминский Ю.Г. Биохимическое действие β-амилоидных пептидов в клетках мозга // Успехи современной биологии. 2008. Т. 128. № 5. С. 467-480.
  6. Манухина Е.Б., Горячева А.В., Барсков И.В. и др. Предупреждение нейродегенеративного повреждения мозга крыс при экспериментальной болезни Альцгеймера с помощью адаптации к гипоксии // Российский физиологический журнал. 2009. Т. 95. С. 706-715.
  7. Манухина Е.Б., Пшенникова М.Г., Горячева А.В. и др. Роль оксида азота в предупреждении когнитивных нарушений при нейродегенеративном повреждении мозга у крыс // Бюллетень экспериментальной биологии медицины. 2008. Т. 146. С. 371-375.
  8. Митрохина О.С., Степаничев М.Ю., Лазарева Н.А. и др. Влияние интрацеребровентрикулярного введения фрагмента (25-35) бета-ами­лоидного пептида на уровни перекисного окисления липидов в структурах мозга и в крови крыс // ДАН. 1999. Т. 368. № 5. С. 711-713.
  9. Муганцева Е.А., Подольский И.Я. Центральное введение амилоидного β-пептида (25-35) и индивидуальные различия когнитивного поведения у крыс // Журнал высшей нервной деятельности. Т. 59. № 5. С. 616-621.
  10. Пшенникова М.Г., Попкова Е.В., Хоменко И.П. и др. Сопоставление устойчивости к нейродегенеративному повреждению у крыс линии Август и популяции Вистар // Бюллетень экспериментальной биологии медицины. 2005.
    Т. 139. С. 540-542.
  11. Сметанников П.Психиатрия. С-Пб.: СПбМАПО. 1997.
  12. Степаничев М.Ю., Флегонтова О.В., Лазарева Н.А. и др. Влияние противовоспалительного цитокина интерлейкина-4 на нейродегенерацию у крыс, вызванную бета-амилоидным пептидом // Нейрохимия. 2006а. Т. 23. № 1. С. 67-72.
  13. Степаничев М.Ю., Лазарева Н.А., Онуфриев М.В. и др. Влияние введения фрагмента (25-35) бета-амилоидного пептида на поведение крыс // Журнал высшей нервной деятельности. 1997. Т. 47. № 3. С. 597-600.
  14. Степаничев М.Ю., Онуфриев М.В., Моисеева Ю.В. и др. Влияние фактора некроза опухоли-альфа и бета-амилоидного пептида (25-35) на показатели свободнорадикального окисления и активность каспазы-3 в мозге крыс // Нейрохимия. 2006б. Т. 23. № 3. С. 217-222.
  15. Трубецкая В.В., Степаничев М.Ю., Онуфриев М.В. и др. Введение агрегированного бета-амилоидного пептида (25-35) вызывает изменение длительной потенциации в гиппокампе in vivo // Журнал высшей нервной деятельности. 2001. Т. 51. № 6. С. 701-704.
  16. Alkam T., Nitta A., Mizoguchi H. et al. Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid beta-induced impairment of recognition memory in mice // Behav. Brain Res. 2008. V. 189. P. 100-106.
  17. Arias C., Montiel, T. Quiroz-Baez, R. Massieu, L.β-Amyloid neurotoxicity is exacerbated during glycolysis inhibition and mitochondrial impairment in the rat hippocampus in vivo and in isolated nerve terminals: implications for Alzheimer's disease // Exp. Neurol. 2002. V. 176. P. 163-174.
  18. Atwood C.S., Moir R.D., Huang X. et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by condi­tions representing physiological aci­dosis // J. Biol. Chem. 1998. V. 273. P. 12817-12826.
  19. Cheng L., Yin W.J., Zhang J.F., Qi J.S. Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo // Synapse. 2009. V. 63. P. 206-214.
  20. Cullen W.K., Suh Y.H., Anwyl R., Rowan M.J. Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments // Neuroreport. 1997. V. 8. P. 3213-3217.
  21. Delobette S., Privat A., Maurice T. In vitro aggregation facilities β-amyloid peptide-(25-35)-induced amnesia in the rat // Eur. J. Pharmacol. 1997. V. 319. P. 1-4.
  22. Díaz A., De Jesús L., Mendieta L. et al. The amyloid-beta(25-35) injection into the CA1 region of the neonatal rat hippocampus impairs the long-term memory because of an increase of nitric oxide // Neurosci. Lett. 2009. [Epub ahead of print]
  23. Floyd R.A.Antioxidants, oxidative stress, and degenerative neurological disorders // Proc. Soc. Exp. Biol. Med. 1999. V. 222. P. 236-245.
  24. Freir D.B., Costello D.A., Herron C.E. A beta 25-35-induced depression of long-term potentiation in area CA1 in vivo and in vitro is attenuated by verapamil // J. Neurophysiol. 2003. V. 89. P. 3061-3069.
  25. Freir, D.B., Holscher C., Herron C.E.Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo // J. Neurophysiol. 2001. V. 85. P. 708-713.
  26. Games D., Khan K.M., Soriano F.G. et al. Lack of Alzheimer pathology after beta-amyloid protein injections in rat brain // Neurobiol. Aging. 1992. V. 13. P. 569-576.
  27. Gengler S., Gault V.A., Harriott P., Hölscher C. Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25-35) are dependent on stimulation-protocol and genetic background // Exp. Brain Res. 2007. V. 179. P. 621-630.
  28. Geiger T., Clarke S.Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation // J. Biol. Chem. 1987. V. 262. P. 785-794.
  29. Giovannelli L., Casamenti F., Scali C. et al. Differential effects of amyloid peptides beta-(1-40) and beta-(25-35) injections into the rat nucleus basalis // Neuroscience. 1995. V. 66.
    P. 781-792.
  30. Hardy J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal // J. Neurochem. 2009. V. 110. P. 1129-1134.
  31. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease // Trends Phar­macol. Sci. 1991. V. 12. P. 383-388.
  32. Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics // Science. 2002. V. 297. P. 353-356.
  33. Hashimoto K., Fukushima T., Shimizu E. et al. Possible role of D-serine in the pathophysiology of Alzheimer's disease // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2004. V. 28. P. 385-388.
  34. Hong D.J., Pei A.L., Sun F.Y., Zhu C.Q. Aberrant neuronal expression of mitotic protein, tau and Bax in the rat brain after injection of Abeta(25-35) into the amygdala // Sheng Li Xue Bao. 2003. V. 55. P. 142-146.
  35. Kaminsky Y.G., Kosenko E.A.Effects of amyloid-beta peptides on hydrogen peroxide-metabolizing enzymes in rat brain in vivo // Free Radic. Res. 2008. V. 42. P. 564-573.
  36. Kaminsky Y.G., Marlatt M.W., Smith M.A., Kosenko E.A. Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: Evidence for Abeta(25-35) // Exp. Neurol. 2009. [Epub ahead of print]
  37. Kaneko I., Morimoto K., Kubo T.Drastic neuronal loss in vivo by beta-amyloid racemized at Ser(26) residue: conversion of non-toxic [D-Ser(26)]beta-amyloid 1-40 to toxic and proteinase-resistant fragments // Neuroscience. 2001. V. 104. P. 1003-1011.
  38. Klementiev B., Novikova T., Novitskaya V. et al. A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35 // Neuroscience. 2007. V. 145. P. 209-224.
  39. Kowall N.W., McKee A.C., Yankner B.A., Beal M.F. In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment // Neurobiol. Aging. 1992. V. 13. P. 537-542.
  40. Kubo T., Nishimura S., Kumagae Y., Kaneko I. In vivo conversion of racemized beta-amyloid ([D-Ser 26]A beta 1-40) to truncated and toxic fragments ([D-Ser26]A beta 25-35/40) and fragment presence in the brains of Alzheimer's patients // J. Neurosci. Res. 2002. V. 70. P. 474-483.
  41. Kubo T., Kumagae Y., Miller C.A., Kaneko I. Beta-amyloid racemized at the Ser26 residue in the brains of patients with Alzheimer disease: implications in the pathogenesis of Alzheimer disease // J. Neuropathol. Exp. Neurol. 2003. V. 62. P. 248-259.
  42. Limón I.D., Díaz A., Mendieta L. et al. Amyloid-beta(25-35) impairs memory and increases NO in the temporal cortex of rats // Neurosci. Res. 2009. V. 63. P. 129-137.
  43. Lin H., Bhatia R., Lal R.Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology // FASEB J. 2001. V. 15. P. 2433-2444.
  44. Lockhart B.P., Benicourt C., Junien J.L., Privat A. Inhibitors of free radical formation fail to attenuate direct beta-amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures // J. Neurosci. Res. 1994. V. 39. P. 494-505.
  45. Lu P., Mamiya T., Lu L.L. et al.Silibinin attenuates amyloid beta(25-35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice // J. Pharmacol. Exp. Ther. 2009. V. 331. P. 319-326.
  46. Martineau M., Baux G., Mothet J.-P.Gliotransmission at central glutamatergic synapses: D-serine on stage // J. Physiol (Paris). 2006. V. 99. P. 103-110.
  47. Masters P.M., Bada J.L., Zigler J.S., Jr. Aspartic acid racemization in heavy molecular weight crystallins and waterinsoluble protein from normal lenses and cataracts // Proc. Natl. Acad. Sci. USA. 1978. V. 75. P. 1204-1208.
  48. Maurice T., Lockhart B.P., Privat A.Amnesia induced in mice by centrally administered b-amyloid peptides involves cholinergic dysfunction // Brain Res. 1996. V. 706. P. 181-193.
  49. Meunier J., Ieni J., Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid b25-35 peptide-induced toxicity in mice involve an interaction with the σ1 receptor // Br. J. Pharmacol. 2006. V. 149. P. 998-1012.
  50. Miao J., Zhang W., Yin R. et al. S14G-Humanin ameliorates Abeta25-35-induced behavioral deficits by reducing neuroinflammatory responses and apoptosis in mice // Neuropeptides. 2008. V. 42. P. 557-567.
  51. Minkeviciene R., Rheims S., Dobszay M.B. et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy // J. Neurosci. 2009. V. 29. P. 3453-3462.
  52. Montiel T., Quiroz-Baez R., Massieu L., Arias C. Role of oxidative stress on β-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: Protection by antioxidants // Exp. Neurol. 2006. V. 200. P. 496-508.
  53. Mori H., Ishii K., Tomiyama T. et al.Racemization: its biological significance on neuropathogenesis of Alzheimer's disease // Tohoku J. Exp. Med. 1994. V. 174. P. 251-262.
  54. Morimoto K., Yoshimi K., Tonohiro T. et al. Co-injection of beta-amyloid with ibotenic acid induces synergistic loss of rat hippocampal neurons // Neuroscience. 1998. V. 84. P. 479-487.
  55. Nakagawa Y., Yuzuriha T., Iwaki T.Active clearance of human amyloid β1-42 peptide aggregates from the rat ventricular system // Neuropathology. 2004. V. 24. P. 194-200.
  56. Nalivaeva N.N., Fisk L.R., Belyaev N.D., Turner A.J. Amyloid-degrading enzymes as therapeutic targets in Alzheimer's disease // Curr. Alzheimer Res. 2008. V. 5. P. 212-224.
  57. O'Mahony S., Harkany T., Rensink A.A. et al. Beta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerebral cortex: reversal by NMDA receptor blockade // Brain Res. Bull. 1998. V. 45. P. 405-411.
  58. Roher A.E., Lowenson J.D., Clarke S. et al. Structural alterations in the peptide backbone of β-amyloid core protein may account for its deposition and stability in Alzheimer's disease // J. Biol. Chem. 1993. V. 268. P. 3072-3083.
  59. Rush D.R., Aschmies S., Merriman M.C.Intracerebral β-amyloid (25-35) produces tissue damage: is it neurotoxic - // Neurobiol. Aging. 1992. V. 13. P. 591-594.
  60. Sáez-Valero J., Angeretti N., Forloni G. Caspase-3 activation by beta-amyloid and prion protein peptides is independent from their neurotoxic effect // Neurosci. Lett. 2000. V. 293. P. 207-210.
  61. Selkoe D.J. The molecular pathology of Alzheimer's disease // Neuron. 1991. V. 6. P. 487-498.
  62. Sigurdsson E.M., Hejna M.J., Lee J.M., Lorens S.A. beta-Amyloid 25-35 and/or quinolinic acid injections into the basal forebrain of young male Fischer-344 rats: behavioral, neurochemical and histological effects // Behav. Brain Res. 1995. V. 72. P. 141-156.
  63. Sigurdsson E.M., Lorens S.A., Hejna M.J. et al. Local and distant histopathological effects of unilateral amyloid-beta 25-35 injections into the amygdala of young F344 rats // Neurobiol. Aging. 1996. V. 17. P. 893-901.
  64. Shapira R., Austin G.E., Mirra S.S. Neuritic plaque amyloid in Alzheimer's disease is highly racemized // J. Neurochem. 1988. V. 50. P. 69-74.
  65. Stein-Behrens B., Adams K., Yeh M., Sapolsky R. Failure of beta-amyloid protein fragment 25-35 to cause hippocampal damage in the rat // Neurobiol. Aging. 1992. V. 13. P. 577-579.
  66. Stepanichev M.Yu., Moiseeva Yu.V., Lazareva N.A. et al.  Single intracerebroventricular administration of amyloid-β25-35 peptide induces impairment in short-term rather than long-term memory in rats // Brain Res. Bull. 2003a. V. 61. P. 197-205.
  67. Stepanichev M.Yu., Onufriev M.V., Mitrokhina O.S. et al. Neurochemical, behavioral and neuromorphological effects of central administration of β-amyloid peptide (25-35) in rat // Нейрохимия. 2000. Т. 17. № 4. С. 291-306.
  68. Stepanichev M.Yu., Onufriev M.V., Yakovlev A.A. et al.  Amyloid-beta (25-35) increases activity of neuronal NO-synthase in rat brain // Neurochem. Int. 2008. V. 52. P. 1114-1124.
  69. Stepanichev M.Yu., Zdobnova I.M., Zarubenko I.I. et al.  Amyloid-β25-35-induced memory impairments correlate with cell loss in rat hippocampus // Physiol. Behav. 2004. V. 80. P. 647-655.
  70. Stepanichev M.Yu., Zdobnova I.M., Yakovlev A.A. et al. Effects of tumor necrosis factor-alpha
    central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35) // J. Neurosci. Res. 2003b. V. 71. P. 110-120.
  71. Stephenson R.C., Clarke S.Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins // J. Biol. Chem. 1989. V. 264. P. 6164-6170.
  72. Terranova J.P., Kan J.P., Storme J.J. et al. Administration of amyloid beta-peptides in the rat medial septum causes memory deficits: reversal by SR 57746A, a non-peptide neurotrophic compound // Neurosci. Lett. 1996. V. 213. P. 79-82.
  73. Varadarajan S., Kanski J., Aksenova M. et al. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer's A beta(1-42) and A beta(25-35) // J. Am. Chem. Soc. 2001. V. 123. P. 5625-5631.
  74. Villard V., Espallergues J., Keller E. et al.  Antiamnesic and neuroprotective effects of the minotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice // Neuropsychopharmacology. 2009. V. 34. P. 1552-1566.
  75. Wu J., Anwyl R., Rowan M.J.beta-Amyloid-(1-40) increases long-term potentiation in rat hippocampus in vitro // Eur. J. Pharmacol. 1995. V. 284. P. R1-3.
  76. Wu S.Z., Bodles A.M., Porter M.M. et al. Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide // J. Neuroinflammation. 2004. V. 1 (1): 2.
  77. Wu M.N., He Y.X., Guo F., Qi J.S.Alpha4beta2 nicotinic acetylcholine receptors are required for the amyloid beta protein-induced suppression of long-term potentiation in rat hippocampal CA1region in vivo // Brain Res. Bull. 2008. V. 77. P. 84-90.
  78. Yan S.D., Chen X., Fu J. et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease // Nature. 1996. V. 382. P. 685-691.
  79. Yang G., Lin S.M., Zhao W.K.Effect of TX0201 on expression of the apoptosis signal transduction molecule caspase-3 and apoptosis associated genes bcl-2 and bax mRNA in brain tissue of rat analogue model of Alzheimer's disease // Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006. V. 26. P. 147-151.
  80. Yamaguchi Y., Kawashima S.Effects of amyloid-beta-(25-35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat // Eur. J. Pharmacol. 2001. V. 412. P. 265-272.
  81. Zhang J.M., Wu M.N., Qi J.S., Qiao J.T. Amyloid beta-protein fragment 31-35 suppresses long-term potentiation in hippocampal CA1 region of rats in vivo // Synapse. 2006. V. 60. P. 307-313.