350 rub
Journal Technologies of Living Systems №8 for 2010 г.
Article in number:
Study of amyloid properties of protein smitin from smooth muscle
Authors:
L.G. Bobyleva, A.G. Bobylev, M.D. Shpagina, I.M. Vikhlyantsev, N.A. Freydina, Z.A. Podlubnaya
Abstract:
Amyloid deposits are the main symptom of amyloidoses, conformational diseases of humans and animals, occurring as a result of hereditary or acquired disorders of protein folding. Amyloid aggregates are observed in various neurodegenerative disorders, in particular Alzheimer's disease, Parkinson's, Huntington's fevers and prion diseases. Amyloid deposits were also found in the blood vessels, in cardiac and skeletal muscles, but the precursor proteins of these amyloid deposits have been little studied. Our previous studies have shown that proteins of titin family (titin, C-, X-, H-proteins) of skeletal and cardiac muscles are capable to form amyloid fibrils. In this work we tested the amyloid properties of smooth muscle protein smitin. Since smitin has a molecular structure similar to that for striated muscle titin, we suggested that smitin can also form amyloids. Using electron microscopy, we showed that smitin from rabbit stomach can form amorphous aggregates. Amyloid nature of the aggregates was confirmed by spectral methods, using specific dyes thioflavin T and Congo red. Thus, using the above methods, we identified the ability of the fifth muscle protein smitin to form amyloid aggregates, which denotes its ability to participate in the formation of amyloid deposits detected in organs and tissues in amyloidosis. Our next task is to find the conditions under which the smooth muscle protein smitin forms amyloid fibrils, and to estimate of their toxic properties.
Pages: 64-68
References
  1. Uversky V.N., Fink A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded // Biochim. Biophys. Acta, 2004. V. 1698. P. 131-153.
  2. Chiti F., Dobson C.M.Protein misfolding, functional amyloid, and human disease // Annu. Rev. Biochem. 2006. V. 75. P. 333-366.
  3. Selkoe D.J.Folding proteins in fatal ways // Nature. 2003. V. 426. P. 900-904.
  4. Sacchettini J.C., Kelly J.W.Therapeutic strategies for human amyloid diseases // Nat. Rev. Drug. Discov. 2002. V. 1. P. 267-275.
  5. Hardy J., Selkoe D.J.The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics // Science. 2002. V. 297. P. 353-356.
  6. Барсуков А., Шустов С., Шкодкин Н. и др. Гипертрофическая кардиомиопатия и амилоидоз сердца // Врач. 2005. Вып. 10. С. 42-46.
  7. Сторжаков Г.И. Гендлин Г.Е. Амилоидоз сердца // Сердечная недостаточность. 2000. Т. 1. № 1. С. 30-34.
  8. Nihoyannopoulos P., Dawson D.Restrictive cardiomyopathies // European Journal of Echocardiography. 2009. V. 10. P. 23-33.
  9. Komatsu H., Shinotani N., Kimori Y. et al.Aggregation of partially unfolded myosin subfragment-1 into spherical oligomers with amyloid-like dye-binding properties // J. Biochem. 2006. V. 139. № 6. P. 989-996.
  10. Алексеева Ю.А., Шпагина М.Д., Вихлянцев И.М. и др. Х-белок скелетных мышц образует амилоиды: данные электронной, люминесцентной и поляризационной микроскопии // Сб.: «Горизонты биофизики: от теории к практике» / под ред. Г.Р. Иваницкого. Серпухов: ГП Серпуховская типография. 2003. С. 83-86.
  11. Podlubnaya Z.A., Alekseeva Yu.A., Shpagina M.D. Fibrils of muscle X-protein: relevance to amyloids and amyloidoses // J. Muscle Res. & Cell Motil. 2003. V. 24.№4-6.P. 351 (Abstr. 32th Europ. Muscle Conf. /6-10 September 2003, Montpellier, France).
  12. Алексеева Ю.А., Емельяненко В.И., Подлубная З.А. Спектральное тестирование амилоидных фибрилл Х-белка скелетных мышц кролика // Тезисы 8-й Междунар. Пущинской школы-конференции молодых ученых. Пущино. 17-21 мая 2004 г. С. 43.
  13. Марсагишвили Л.Г., Шпагина М.Д., Емельяненко В.И. и др. Саркомерные белки семейства тайтина образуют амилоиды // Биофизика. 2005. Т. 50. № 5. С. 803-809.
  14. Подлубная З.А., Марсагишвили Л.Г. Новые амилоидные белки семейства тайтина и их свойства: перспективы для диагностики и терапии амилоидозов // Технологии живых систем. 2008. Т. 5. № 5-6. С. 11-21.
  15. Бобылëв А.Г., Марсагишвили Л.Г., Шпагина М.Д. и др. Aмилоиды мышечного Х-белка семейства тайтина и Aβ-пептидов мозга: тестирование эффективности антиамилоидных препаратов // Технологии живых систем. 2009. Т. 6. № 7. С. 46-53.
  16. Kyoungtae K. and Thomas C.S. Keller, III. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro // The Journal of Cell Biology. 2002. V. 156.
    № 1. P. 101-111.
  17. Labeit S., Lahmers S., Burkart C. et al. Expression of Distinct Classes of Titin Isoforms in Striated and Smooth Muscles by Alternative Splicing, and Their Conserved Interaction with Filamins // J. Mol Biol. 2006. V. 362. № 4. P. 664-681.
  18. Podlubnaya Z.A. Protein smitin from vertebrate smooth muscles manifests amyloid properties. In: Biological motility: from fundamental achievements to nanotechnologies, Pushchino, Synchrobook. 2010. P. 210-212.
  19. Huxley H.E. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle // J. Mol. Biol. 1963. V. 7. P. 281-308.
  20. LeVine H., III.Thioflavine T interaction with synthetic Alzheimer-s disease β-amyloid peptides: Detection of amyloid aggregation in solution // Protein Science. 1993. V. 2. P. 404-410.
  21. Chi R.J., Simon A.R., Bienkiewicz E.A. et al. Smooth Muscle Titin Zq Domain Interaction with the Smooth Muscle α-Actinin Central Rod // J. Biol Chem. 2008. V. 283. № 30.P. 20959-20967.