350 rub
Journal Science Intensive Technologies №6 for 2025 г.
Article in number:
Construction and analysis of stochastic models of organizational and technical systems using the normal approximation method
Type of article: overview article
DOI: https://doi.org/10.18127/j19998465-202506-04
UDC: 519.6, 519.7
Authors:

V.V. Belousov1, O.V. Druzhinina2

1, 2 FRС «Computer Science and Control» of RAS (Moscow, Russia)
1 vbelousov@frccsc.ru; 2 odruzhinina@ipiran.ru

Abstract:

Slotted waveguide antennas are widely used in radio engineering systems for various purposes due to their advantages: high directivity, the possibility of constructing linear and lattice radiators, compactness and manufacturability. Despite the advantages, designing slotted waveguide antennas is a difficult task. The problem is that the antenna characteristics are determined not only by the electrodynamic processes occurring inside the waveguide, but also by the parameters of the slots, their location and orientation. In this case, it is necessary to take into account the mutual influence of the slots on each other, as well as the matching of the antenna with the supply path. In particular, resonant and non-resonant slotted waveguide antennas are distinguished. In resonant designs, the slots are excited by a standing wave, which ensures high efficiency, but imposes strict matching requirements. Traveling wave is used in non-resonant antennas, which makes it possible to expand the band and simplify matching, however, the task arises of distributing the characteristics along the structure. An important task in the design is the formation of a directional pattern with inclination of the main lobe and sidelobe level. These parameters are determined by the amplitude-phase distribution and depend on the location and characteristics of the slots. The correct choice of their size and position allows you to control the orientation and achieve the required characteristics. The article presents a scientific justification of the mathematical apparatus for calculating gaps for optimization and obtaining the characteristics. The algorithm takes into account the processes in the waveguide, the mutual influence and the alignment with the supply path. The technique involves numerical modeling, followed by analysis of the results and optimization of parameters to achieve the tilt of the main lobe, reduce the level of the side lobes and provide the electrical characteristics.
Purpose – development and optimization of a slotted waveguide antenna with a given inclination of the main lobe of the radiation pattern and the required sidelobe level based on the slot calculation algorithm.

A slotted waveguide antenna designed to operate at a frequency of 10 GHz is calculated based on an algorithm for determining slot conductivities at equal-amplitude current distribution. A non-resonant slotted waveguide antenna with variable-phase slots in a waveguide with an absorbing load is considered. Numerical modeling in the FEKO has been performed, confirming the correctness of the calculations. Optimization of the design parameters in DT Seven has been carried out to form a directional pattern with a given inclination of the main lobe and the required sidelobe level. Radiation characteristics meeting the set requirements have been obtained.

A universal algorithm has been developed for calculating a non-resonant slotted waveguide antenna with variable-phase slots, which allows forming a radiation pattern with specified parameters. The possibility of optimization makes the method adaptable to different requirements and ensures wide applicability in practice. The implemented approach allows us to expand it to calculate antennas with nonuniform amplitude current distribution, as well as other types of slotted waveguide antennas.

Pages: 38-47
For citation

Belousov V.V., Druzhinina O.V. Construction and analysis of stochastic models of organizational and technical systems using the normal approximation method. Science Intensive Technologies. 2025. V. 26. № 6. P. 38−47. DOI: https://doi.org/ 10.18127/j19998465-202506-04 (in Russian)

References
  1. Sinicyn I.N., Shalamov A.S. Lekcii po teorii sistem integrirovannoj logisticheskoj podderzhki. Izd. 2-e. M.: TORUS PRESS. 2019. 1072 s. (in Russian).
  2. Sinicyn I. N., Shalamov A.S. Optimal'noe ocenivanie i upravlenie processami v stohasticheskih sinergeticheskih organizacionno-tekhniko-ekonomicheskih sistemah. Optimal'noe stohasticheskoe upravlenie processami v svyazannyh podsistemah produkcii i personala na fone pomekh (II). Sistemy vysokoj dostupnosti. 2021. T. 17. № 1. S. 51–72 (in Russian).
  3. Sinicyn I.N., Shalamov A.S. Bazovye tekhnologii upravleniya stoimost'yu zhiznennogo cikla organizacionno-tekhniko-ekonomicheskih sistem vysokoj dostupnosti. Chast' 6. Stohasticheskie metody mikroekonomicheskogo modelirovaniya dinamicheskih processov. Sistemy vysokoj dostupnosti. 2015. T. 11. № 2. S. 3–12 (in Russian).
  4. Skvorcov A.V., Skhirtladze A.G., Chmyr' D.A. Avtomatizaciya upravleniya zhiznennym ciklom produkcii. M.: Avtomatizaciya i upravlenie. 2013. 154 s. (in Russian).
  5. Dondorev M.S., Mironychev V.N., Vorob'eva L.N., Gumnikova T.S. Principy sozdaniya integrirovannoj logisticheskoj podderzhki ekspluatacii izdelij naukoemkoj produkcii i programmno-tekhnicheskie resheniya. Materialy mezhdunarodnoj konferencii i vystavki CAD/CAM/PDM-2006. M.: Izd-vo IPU RAN im. V.A. Trapeznikova, 2006. S. 262–269 (in Russian).
  6. Reisch C., Burmester H. Model selection focusing on longtime behavior of differential equations. Numerical Mathematics and Advanced Applications. Proc. of European Conference ENUMATH. 2023. V. 2. P. 292–301.
  7. Saha T.S., Heinlein A., Reisch C. Towards model discovery using domain decomposition and PINNs. IFAC PapersOnLine. 2025. V. 59-1. P. 37–42.
  8. Pugachev V.S., Sinicyn I.N. Stohasticheskie differencial'nye sistemy. Analiz i fil'traciya. Izd. 2-e. M.: Nauka. 1990. 630 c. (in Russian).
  9. Pugachev V.S., Sinicyn I.N. Teoriya stohasticheskih sistem. Izd. 2-e. M.: Logos. 2003. 1000 c. (in Russian).
  10. Mao X. Stochastic differential equations and applications. 2nd ed. Cambridge: Woodhead Publ. 2008. 440 p.
  11. Kazakov I.E. Obobshchenie metoda statisticheskoj linearizacii na mnogomernye sistemy. Avtomatika i telemekhanika. 1965. T. 26. Vyp. 7. S. 1210–1215 (in Russian).
  12. Belousov V.V., Druzhinina O.V. Stohasticheskaya modifikaciya modeli «hishchnik–zhertva» na osnove metoda normal'noj approksimacii. Uchenye zapiski UlGU. Ser.: Matematika i informacionnye tekhnologii. 2024. № 2. S. 1–10 (in Russian).
  13. Trubeckov D.I. Fenomen matematicheskoj modeli Lotki – Vol'terry i skhodnyh s nej. Izv. vuzov. PND. 2011. № 2. S. 69–88 (in Russian).
  14. Druzhinina O.V., Makarenkova I.V., Maksimova V.V. Postroenie i komp'yuternoe issledovanie matematicheskih modelej remonta i ekspluatacii tekhnicheskih sredstv zheleznodorozhnogo transporta. Nelinejnyj mir. 2023. T. 21. № 1. S. 5–12 (in Russian).
Date of receipt: 30.09.2025
Approved after review: 10.10.2025
Accepted for publication: 10.11.2025