350 rub
Journal Science Intensive Technologies №1 for 2025 г.
Article in number:
Secondary processing of radar and radio navigation information: tracking of the object's trajectory
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202501-04
UDC: 621.396
Authors:

M.H.Aksayitov1, E.V. Egorova2, A.N. Ribakov3

1 JSC «Concern Granit-Electron» (St. Petersburg, Russia)
2 Moscow State University of Information Technology, Radio Engineering and Electronics (Moscow, Russia)
3 FSUE VNIIA n.a. N.L. Dukhov (Moscow, Russia)
1 ak-marat@bk.ru, 2 calipso575@gmail.com

Abstract:

The concept of signal detection implies establishing the fact of the presence of a signal at the output of a radar receiver that differs from noise in accordance with the adopted criterion of difference. Such a definition of radar signal detection, provided that any source of these signals appearing in the radar's area of responsibility is the desired target, may be sufficient to identify it with the concept of object (target) detection. However, in a large number of radar problems, this cannot be enough, since when solving them, it is sometimes necessary not only to detect a signal, but also to determine its belonging to a target in a given class, having filtered out other targets that do not belong to it. In this case, the accuracy of identification with a given class is usually required to be high, and an identification error is classified as a false alarm or target omission. In this case, the concept of target detection also includes its recognition. The recognition task, as well as the detection task, is statistical and is characterized by a certain probability measure. The detection and recognition procedures can be sequential or combined. In general, the processing of radar and radio navigation information can be divided into primary and secondary. Primary processing devices solve the considered problems of signal detection and measurement of coordinates of the instantaneous position of radar or radio navigation objects (targets). The main tasks of secondary information processing include: forming marks (calculating the instantaneous location of objects), detecting object trajectories, tracking object trajectories, including estimating trajectory parameters. Secondary information processing is usually performed automatically using a computer. This article presents a structural diagram of the trajectory tracking algorithm, illustrating the relationship and the sequence of performing the main operations when tracking target trajectories. Additionally, a quasi-deterministic model of the object (target) trajectory is considered and analyzed. A special case of uncorrelated measurement error of coordinates determining parameter estimates by the least squares method is considered. A solution to the problem of estimating the target trajectory using the maximum likelihood method is proposed, and mathematical expressions are identified that coincide with the system of equations and determine parameter estimates by the least squares method. Mathematical calculations confirm that the estimates obtained when choosing weighting coefficients coincide with the maximum likelihood estimates.

Pages: 29-36
For citation

Aksayitov M.H., Egorova E.V., Ribakov A.N. Secondary processing of radar and radio navigation information: tracking of the object's trajectory. Science Intensive Technologies. 2025. V. 26. № 1. P. 29−36. DOI: https://doi.org/ 10.18127/ j19998465-202501-04
(in Russian)

References
  1. Sosulin Yu.G., Fishman M.M. Teoriya posledovatel'nyh reshenij i ee primeneniya. M.: Radio i svyaz'. 1985. S. 272 (in Russian).
  2. Akimov P.S., Bakut P.A., Bogdanovich V.A. Teoriya obnaruzheniya signalov / Pod red. P.A. Bakuta. M.: Radio i svyaz'. 1984. S. 440 (in Russian).
  3. Egorova E.V., Aksyaitov M.H., Rybakov A.N. Ierarhicheskie urovni obrabotki informacii v sistemah obnaruzheniya i soprovozhdeniya ob"ektov. Naukoemkie tekhnologii. 2019. № 7. S. 51–59 (in Russian).
  4. Sokolov A.V., Lazutkin B.A., Popov D.I., Rodinov V.V. i dr. Obnaruzhenie i raspoznavanie ob"ektov radiolokacii: Monografiya. M.: Radiotekhnika. 2006. S. 176 (in Russian).
  5. Tatarskij B.T., D'shorec R.Z. Sintez algoritmov prinyatiya resheniya dlya mnogoporogovogo obnaruzhitelya. Radiotekhnika. 1999. № 2 (in Russian).
  6. Aksyaitov M.H., Egorova E.V., Martynov N.V., Rybakov A.N. Obnaruzhenie malokontrastnyh celej. Uspekhi sovremennoj radioelektroniki. 2017. № 1. S. 23–26 (in Russian).
  7. Anisimov B.V., Kurganov V.D., Zlobin V.K. Raspoznavanie i cifrovaya obrabotka izobrazhenij: Ucheb. posobie dlya studentov vuzov. M. 1983. S. 295 (in Russian).
  8. Egorova E.V., Aksyaitov M.H., Rybakov A.N. Veroyatnostnaya procedura raspoznavaniya i identifikaciya prostranstvennyh ob"ektov. Uspekhi sovremennoj radioelektroniki. 2023. T. 77. № 3. C. 53–63. DOI: 10.18127/j20700784-202303-05 (in Russian).
  9. Levin B.R. Teoreticheskie osnovy statisticheskoj radiotekhniki. M.: Radio i svyaz'. 1989. S. 656 (in Russian).
  10. Cvetkov A.G. Principy kolichestvennoj ocenki effektivnosti radioelektronnyh sredstv. M.: Sov. radio. 1971. S. 201 (in Russian).
Date of receipt: 28.11.2024
Approved after review: 09.12.2024
Accepted for publication: 14.01.2025