350 rub
Journal Science Intensive Technologies №5 for 2023 г.
Article in number:
ROF network segment control method using chirped optical pulses
Type of article: overview article
DOI: https://doi.org/10.18127/j19998465-202305-05
UDC: 629.05
Authors:

I.L. Vinogradova1, P.E. Filatov2, A.M. Komissarov3, Ya.M. Kostsov4, L.Z. Yantilina5

15 Ufa University of Science and Technology (Ufa, Russia)

Abstract:

The article is devoted to the consideration of the possibility of using the optical pulse chirp function as a radio segment control resource in RoF systems. Such a resource does not belong to traditional telecommunications, is implemented at the physical level and is characterized by high speed.

Goal – save the telecommunications resource or not use it at all for the needs of management, i.e. transfer all the necessary information in the signal itself – the so-called non-relational control.

A scheme for constructing a RoF segment is proposed – using the developed components: a chirp-to-amplitude converter and an interference separator. A method for controlling the PAR radio emission is proposed, which at the same time provides the construction of dynamic VLANs in the radio network, tied to the radio lobe. In addition, it is proposed to transmit control information (about the shape and direction of the latter) to the PAA from above from the network segment in the form of a function of optical pulse chirping, which is an information Ethernet packet. It is assumed that the PAR is the end of the optical part of the fiber optic segment, i.e. in the simplest case, it works as a radio emitter in a Radio-over-Fiber (RoF) system.

The proposed method and scheme make it possible to transfer part of the service functions from the radio segment to the equipment located "on the ground". If the radio segment serves a swarm (swarms) of UAVs, then the simplification of the equipment and the reduction in the energy of interaction on the flying network is a significant positive factor, especially given the significant dynamics of the movement of objects.

Pages: 37-52
For citation

Vinogradova I.L., Filatov P.E., Komissarov A.M., Kostsov Ya.M., Yantilina L.Z. ROF network segment control method using chirped optical pulses. Science Intensive Technologies. 2023. V. 24. № 5. P. 37−52. DOI: https://doi.org/10.18127/ j19998465-202305-05 (in Russian)

References
  1. Balzer J.C., Saraceno C J., Koch M., Kaurav P., Pfeiffer U.R., Withayachumnankul W., Kürner T., Stöhr A., El-Absi M., Ali Al-Haj Abbas, Kaiser Thomas, Czylwik A. THz Systems Exploiting Photonics and Communications Technologies. IEEE Journal of Microwaves, VOLUME 3, JANUARY 2023. № 1. P. 268–288.
  2. YUferev S. Roj bespilotnikov. Budushchee boevyh dejstvij. Voennoe obozrenie. 2019. URL: https://topwar.ru/164570-roj-bespilotnikovbuduschee-boevyh-dejstvij.html (data obrashcheniya: 05.04.2023).
  3. Mustaev A.F. Strategii upravleniya roem bespilotnyh letatel'nyh apparatov. Vestnik nauki. 2019. T. 5. № 3 (12) S. 96–99.
  4. Zamani, A., Kämmer, R., Hu. Y. et al. Optimization of unmanned aerial vehicle augmented ultra-dense networks. Journal Wireless Com Network (2020) 2020. V. 192. DOI 10.1186/s13638-020-01804-3.
  5. Varel'dzhyan K.S., Paramonov A.I., Kirichek R.V. Optimizaciya traektorii dvizheniya BPLA v letayushchih sensornyh setyah. Elektrosvyaz'. 2015. № 7. S. 20–25.
  6. Kirichek R.V., SHilin P.A. Analiz ispol'zovaniya BPLA kak uzla seti VANET. Informacionnye tekhnologii i telekom-munikacii. 2015. № 4. S. 87–96.
  7. Zaharov M.V., Kirichek R.V., Paramonov A.I. Zadacha raspredeleniya resursov v letayushchej sensornoj seti. YUbilejnaya, 70-ya Vserossijskaya nauchno-tekhnicheskaya konferenciya, posvyashchennaya Dnyu radio. — SPb.: SPbGEU «LETI» im. V. I. Ul'yanova (Lenina). 2015. S. 198–199.
  8. Sidorov K.M., Skobelev S.P. Fazirovannye antennye reshetki svyazannyh mnogomodovyh volnovodov geksagonal'nogo se-cheniya s sektornymi diagrammami napravlennosti. Radiotekhnika. 2022. T. 86. № 4. S. 42–49. DOI: 10.18127/j00338486-202204-06.
  9. Artemov M.L., Slichenko M.P., Trushin S.P. Potencial'naya tochnost' pelengovaniya pri fluktuaciyah diagramm napravlen-nosti antennoj sistemy mnogokanal'nogo obnaruzhitelya-pelengatora. Radiotekhnika. 2022. T. 86. № 1. S. 123−131. DOI: 10.18127/j00338486202201-17.
  10. Volovach V.I., Artyushenko V.M. Organizaciya obmena diskretnoj informaciej v radiolinii blizhnego dejstviya SVCH-diapazona s pomoshch'yu tochechnyh datchikov. Elektromagnitnye volny i elektronnye sistemy. 2019. № 2. S. 69–99. DOI: 10.18127/j15604128201902-09.
  11. Gol'dshtejn A.B., Gol'dshtejn B.S. Tekhnologiya i protokoly MPLS. SPb.: BHV – Sankt-Peterburg. 2005. 304 s.
  12. Abraha, S.T. Impulse Radio Ultra Wideband over Fiber Techniques for Broadband In-Building Network Application. Phd Thesis 1 (Research TU/e. Graduation TU/e), Electrical Engineering. Technische Universiteit Eindhoven. 2012. DOI: doi.org/10.6100/IR735363.
  13. Shams Eldin, Haymen. Radio over Fiber Distribution Systems for Ultra Wideband and Millimetre wave Applications. Ph. D. thesis. Dublin City University. 2011.  5, 2023, P. 37−52
  14. Sultanov A.H., Vinogradova I.L., Meshkov I.K., Andrianova A.V., Abdrahmanova G.I., Ishmiyarov A.A., Yantilina L.Z. Spo-sob podklyucheniya antennyh izluchatelej dlya ROF s primeneniem opticheskogo ustrojstva i metodika rascheta ego parametrov. Komp'yuternaya optika. 2015. T. 39. № 5. S. 728-737. DOI: 10.18287/0134-2452-2015-39-5-728-737.
  15. Mukherjee B. Optical communication networks. New York: McGraw-Hill. 2005. 576 p.
  16. VLAN na pol'zovatelya: arhitektura i al'ternativy. URL: https://nag.ru/material/16925 (data obrashcheniya: 05.04.2023).
  17. Patent na poleznuyu model' RU 163995 U1 Ustrojstvo dlya razvetvleniya i chirpirovaniya opticheskih signalov. G.I. Abd-rahmanova, A.V. Andrianova, I.L. Vinogradova, E.P. Grahova, A.R. Zajnullin, A.A. Ishmiyarov, I.K. Meshkov, A.H. Sultanov, Chi-rikov R.Yu. 2016.
  18. Vinogradova I.L., Sultanov A.H., Yantilina L.Z., Gizatullin A.R. Preobrazovatel' chirp→amplituda na baze erbievogo volokonnoopticheskogo usilitelya dlya upravleniya radiofotonnymi sistemami. Fizika volnovyh processov i radiotekhniche-skie sistemy. 2019.  T. 22. № 4–2. S. 129–137.
  19. Ortega B., Cruz J.L., Capmany J., Andrés M. V., Pastor D. Variable Delay Line for Phased-Array Antenna Based on a Chirped Fi-ber Grating. IEEE Transactions on Microwave Theory and Techniques. August 2000, V. 48, № 8. P. 1352–1360.
  20. Bo Zhou, Xiaoping Zheng, Xianbin Yu, Hanyi Zhang, Yili Guo, Bingkun Zhou. Optical Beamforming Networks Based on Broadband Optical Source and Chirped Fiber Grating. IEEE Photonics Technology Letters. 2008. V. 20. May 1. № 9. P. 733–735.
  21. Meijerink Arjan, Roeloffzen C.G.H., Meijerink R., Leimeng Zhuang, Marpaung D.A.I., Bentum M.J., Burla M., Stude J.V., Jorna P., Hulzinga A., van Etten W. Novel Ring Resonator-Based Integrated Photonic Beamformer for Broadband Phased Array Receive Antennas Part I: Design and Performance Analysis. J. Lightwave Technology. 2010. V. 28. № 1. January 1. P. 3–18.
  22. Leimeng Zhuang, Roeloffzen C.G.H., Meijerink A., Burla M., Marpaung D.A.I., Leinse A., Hoekman M., Heideman R.G., van Etten W. Novel Ring Resonator-Based Integrated Photonic Beamformer for Broadband Phased Array Receive Antennas. Part II: Experimental Prototype. Journal of lightwave technology, 2010. V. 28. January 1. № 1. P. 19–31.
  23. Arokiaswami Alphones, Pham Quang Thai. Hybrid Approach for Optical Beamforming for Phased Array. Proceedings of Asia-Pacific Microwave Conference. 2010. WE4E-l. P. 311–317.
  24. Drummond M.V., Monteiro P.P., Nogueira R.N. Photonic True-Time Delay Beamforming Based on Polarization-Domain Interferometers. J. Lightwave technology. 2010. V. 28. № 17. Sept. P. 2492–2498.
  25. Burla M., Khan M.R.H., Marpaung D.A.I., Roeloffzen C.G.H., Maat P., Dijkstra K., Leinse A., Hoekman M., Heideman R. Squint-Free Beamsteering Demonstration using a Photonic Integrated Beamformer based on Optical Ring Resonators. 2010. IEEE.
  26. Burla M., Khan M.R.H., Marpaung D.A.I., Zhuang L., Roeloffzen C.G.H., Leinse A., Hoekman M., Heideman R. Separate Carrier Tuning Scheme for Integrated Optical Delay Lines in Photonic Beamformers. Proceedings of the 2011 IEEE MWP. 2011. P. 65–68.
  27. Xiaoxiao Xue , Yi Xuan, Chengying Bao, Shangyuan Li, Xiaoping Zheng, Bingkun Zhou, Minghao Qi, Weiner A.M. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control. Journal of lightwave technology. 2018.  V. 36. № 12. June 15. P. 2312–2321.
  28. Vidal B., Mengual T., Mart´I J. Fast Optical Beamforming Architectures for Satellite-Based Applications. Hindawi Publishing Corporation Advances in Optical Technologies, V. 2012, Article ID 385409. DOI:10.1155/2012/385409.
  29. Burla M., Marpaung D.A.I., Zhuang L., Khan M.R., Leinse A., Beeker W., Hoekman M., Heideman R.G., Roeloffzen C.G.H. Multiwavelength-Integrated Optical Beamformer Based on Wavelength Division Multiplexing for 2-D Phased Array Antennas. Journal of Lightwave Technology. 2014. V. 32. № 20. October 15. P. 3509–3520.
  30. Chizh A.L., Malyshev S.A. Mnogokanal'naya volokonno-opticheskaya sistema raspredeleniya sinhrosignala v aktivnyh faziro-vannyh antennyh reshetkah. Trudy Instituta fiziki NAN Belarusi. 2018. № 2. S. 257–262.
  31. Zelenin I.A., Ryzhikov A.G., Fedorov S.M. Antennaya reshetka na osnove linzy Rotmana. Radioelektronika i sistemy svya-zi. 2012. № 3. S. 31–37.
  32. Xu-Dong Bai, Xian-Ling Liang, Jian-Ping Li, Kun Wang, Jun-Ping Geng, Rong-Hong Jin. Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams. Scientific Reports. 6:27815. DOI: 10.1038/srep27815.
  33. Hung-I Lin, Wen-Jiao Liao. A Beam Switching Array Based on Rotman Lens for MIMO Technology. IEEE. 2012 
  34. Bratchikov A. N., Voskresenskij D.I., Sadekov T.A. Fazirovannye antennye reshetki s opticheskim upravleniem. 10th In-ternational Crimean Conference “Microwave & Telecommunication Technology”. 11–15 September. Sevastopol, CriMiCo'2000 Organizing Committee; Weber Co. IEEE Catalog Number: 00EX415. 2000. C. 29–32.
  35. ShChuka A.A. Elektronika. Ucheb/ posobie. Pod red. prof. A.S. Sigova. SPb.: BHV-Peterburg. 2005. 800 s.
  36. Jesperse N. V., Herczfeld P.R. Optical Techniques for Reconfiguring Microwave Phased Arrays. IEEE Transactions on Antennas and Propagation. JULY 1990. V. 38. № 7. P. 1054–1058.
  37. Deroba J.C., Schneider G.J. Christopher A. Schuetz, and Dennis W. Prather. Tapered Multi-Beam Arrays via an Optically Power-Efficient Photonic Architecture. Journal of Lightwave Technology. 2018. V. 36. № 11. JUNE 1. P. 2259–2270.
  38. Xue Wu, Huaixi Lu, Kaushik Sengupta. Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at subwavelength scales. Nature communications. 2019. V. 10. P. 2722. DOI: 10.1038/s41467-019-09868-6.
  39. Patent RF № 0002552142. Opticheskaya fazirovannaya antennaya reshetka. A.A. Babajlov, D.A. Danilenko, L.V. Voroncov, V.S. Verba. 10.06.2015, https://edrid.ru/rid/216.013.508d.html (data obrashcheniya: 05.04.2023).
  40. Kim T., Bhargava P., Poulton C.V., Notaros J., Yaacobi A., Timurdogan E., Baiocco C., Fahrenkopf N., Kruger S., Ngai T., Timalsina Yu., Watts M.R., Stojanovic V. A Single-Chip Optical Phased Array in a 3D-Integrated Silicon Photonics/65nm CMOS Technol-ogy. IEEE International Solid-State Circuits Conference. 2019. P. 463–466.
  41. Consolino L., Nafa M., Cappelli F., Garrasi K., Mezzapesa F.P., Li L., Davies A.G., Linfield E.H., Vitiello M.S., De Natale1 P., Bartalini S. Fully phase-stabilized quantum cascade laser frequency comb. Electronic and Electrical Engineering. 2018. V. 2. № 5. P. 231–237.
  42. Agrawal G. P. Nonlinear fiber optics. Boston: Academic Press. 2009. P. 466.
  43. Meshkov I.K., Sultanov A.K., Vinogradova I.L., Grakhova E.P., Abdrakhmanova G.I., Andrianova A.V., Ishmyarov A.A., Voronkov G.S. Experimental study of wireless part of laboratory bench, implementing IR-UWB Radio-over-Fiber system. Proceedings of SPIE, 2017. V. 10342. Nomer stat'i 103420A. DOI: 10.1117/12.2270650.
  44. Ran M., Lembrikov B. I., Ben Ezra Y. Ultra-Wideband Radio-Over-Optical Fiber Concepts, Technologies and Applications. IEEE Photonics Journal. DOI: 10.1109/JPHOT.2010.2041055.  5, 2023, P. 37−52
  45. Vinogradova I.L., Gizatulin A.R., Meshkov I.K., Bourdine A.V., Tiwari M. A nonlinear radio-photon conversion device. Photonics 2022. V. 9(6). P. 417. DOI: 10.3390/photonics9060417.
  46. Zyuko A.G., Klovskij D.D., Korzhik V.I., Nazarov M.V. Teoriya elektricheskoj svyazi. M.: Radio i svyaz'. 1999. 432 s.
  47. Sultanov A.K., Vinogradova I.L., Yantilina L.Z., Lyubopytov V.S., Vinogradov S.L. Construction of a geometry tool for pipelines 100–300 mm in diameter based on a fiber-optic sensor. Measurement Techniques. 2016. T. 58. № 10. S. 1113–1118.
  48. Chekanov D. Shirokopolosnyj marshrutizator GN-BR401 ot kompanii Gigabyte. Testirovanie. URL: https://3dnews.ru/100083 (data obrashcheniya: 05.04.2023).
  49. HP 2915 pochemu tormozit skorost' mezhdu vlan? URL: https://qna.habr.com/q/938465 (data obrashcheniya: 05.04.2023).
  50. Marshrutizaciya podsetej i padenie skorosti obmena. URL: https://forum.nag.ru/index.php?/topic/181733-marshrutizaciya-podsetey-ipadenie-skorosti-obmena/ (data obrashcheniya: 05.04.2023).
  51. Agwu Chukwuemeka Odi, Nweso Emmanuel Nwogbaga, Ojiugwo Chukwuka N. The Proposed Roles of VLAN and Inter-VLAN Routing in Effective Distribution of Network Services in Ebonyi State University. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): Volume 4 Issue 7, July 2015 Paper ID: SUB157109
  52. Goryachkin B.S., Bobrov D.V. Effektivnost' principov adaptivnoj verstki pri razrabotke pol'zovatel'skih interfejsov. Dinamika slozhnyh sistem. 2023. T. 17. № 1. S. 5−16. DOI: 10.18127/j19997493-202301-01.
Date of receipt: 10.06.2023
Approved after review: 26.06.2023
Accepted for publication: 10.07.2023