G.S. Sаdykhov1, V.P. Savchenko2, S.S. Kudryavtseva3
1,3 Bauman Moscow State Technical University (Moscow, Russia)
2 JSC «Academician A.L. Mints Radiotechnical Institute» (Moscow, Russia)
In the tasks of extending the useful life of non-restorable items, the amount of observed items is very limited. Therefore, the results of production tests are added to the observed sample volume of the items. Then there is a problem of estimating the mean residual operating life of items with large sample volumes of items. At the same time, the laws of operating life allocation of the studied items of the same type may be different.
Derive a formula for calculating the lower confidence limit of the mean residual operating life of items for a given confidence probability for any law of operating life consumption with large sample volumes of items.
The lower confidence limit of the mean residual operating life of non-restorable items has been established for a given confidence probability based on the results of a large volume of observations during testing and operation. The established boundary is valid for any law of operating life consumption of non-restorable items.
The established lower confidence limit of the mean residual operating life makes it possible to find the extended useful life of non-restorable items beyond the assigned levels. An example of calculating the lower confidence limit of the mean residual operating life for a given confidence probability is given.
Sаdykhov G.S., Savchenko V.P., Kudryavtseva S.S. The lower confidence limit of the mean residual operating life of items with large sample volumes. Science Intensive Technologies. 2023. V. 24. № 1. P. 24−30. DOI: https://doi.org/10.18127/j19998465-202301-03 (in Russian)
- Sadyhov G.S., Kudryavceva S.S. Raschet i ocenka srednego ostatochnogo resursa nevosstanavlivaemyh ob"ektov v zavisimosti ot zadannogo urovnya bezotkaznosti. Problemy mashinostroeniya i nadezhnosti mashin. 2022. № 2. S. 13–22. DOI: 10.31857/S0235711922020134 (in Russian).
- Mihajlov V.S., Yurkov N.K. Integral'nye ocenki v teorii nadezhnosti. Vvedenie i osnovnye rezul'taty. M.: Tekhnosfera, 2020. 148 s. (in Russian).
- Severcev N.A., Yurkov N.K., Nguen K.T. Pokazatel' «srednij ostatochnyj srok utilizacii tekhnicheskih ob"ektov» i ego svojstva. Nadezhnost' i kachestvo: Trudy mezhdunarodnogo simpoziuma. Pod red. N.K. Yurkova. T. 1. Penza: Izd. PGU, 2019. S. 202 (in Russian).
- Petushkov V.A. K prognozirovaniyu ostatochnogo resursa konstrukcij s povrezhdeniyami, podvergaemyh v ekspluatacii udarnym vozdejstviyam. Problemy mashinostroeniya i nadezhnosti mashin. 2020. № 3. S. 91–105. DOI: 10.31857/S023571192002011X (in Russian).
- Gnedenko B.V., Belyaev Yu.K., Solov'ev A.D. Matematicheskie metody v teorii nadezhnosti i ih statisticheskij analiz. M.: URSS. 2013. 584 c. (in Russian).
- Sadyhov G.S., Savchenko V.P., Sidnyaev N.I. Modeli i metody ocenki ostatochnogo resursa izdelij radioelektroniki. M.: Izd-vo MGTU im. N.E. Baumana. 2015. 382 c. (in Russian).
- Hoeffding W. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association. 1963. № 58.
P. 13–30 (in Russian). - Sadyhov G.S., Kuznecov V.I. Metody i modeli ocenok bezopasnosti sverhnaznachennyh srokov ekspluatacii tekhnicheskih ob"ektov. M.: URSS. 2007. 144 c. (in Russian).
- Artyuhov A.A. Ocenki srednej narabotki do otkaza pri chastyh srabatyvaniyah. Novye informacionnye tekhnologii v avtomatizirovannyh sistemah. 2015. № 18. S. 295–297 (in Russian).
- Dimitrienko Yu.I., Yurin Yu.V., Evropin S.V. Prognozirovanie dolgovechnosti i nadezhnosti elementov konstrukcij vysokogo davleniya. CHast' 1. CHislennoe modelirovanie nakopleniya povrezhdenij. Izvestiya vuzov. Ser.: Mashinostroenie. 2013. № 11. S. 3–11 (in Russian).
- Pavlov I.V., Razgulyaev S.V. Calculation of the basic reliability parameters for the model of a system with dual redundancy in different subsystems. Journal of Machinery Manufacture and Reliability. 2020. V. 49. № 10. P. 829–835. DOI: 10.3103/S1052618820100076.
- Pavlov I.V. Confidence limits for system reliability indices with increasing function of failure intensity. Journal of Machinery Manufacture and Reliability. 2017. V. 46. № 2. P. 149–153. DOI: 10.3103/S1052618817020133.
- Sidnyaev N.I. Methods for calculating the influence of the electrodynamic field in the ionosphere on a spacecraft. Cosmic Research. 2022. V. 60. № 3. P. 165–173. DOI: 10.1134/S001095252202006X.
- Sidnyaev N.I., Butenko I.I., Bolotova E.E. Statistical and linguistic decision-making techniques based on fuzzy set theory. Advances in Intelligent Systems and Computing. 2020. V. 1127 AISC. DOI: 10.1007/978-3-030-39216-1_16.
- Belyaev Y.K., Hajiyev A.H. Mathematical models of systems with several lifts and various control rules. Reliability: Theory and Applications. 2020. V. 15. № 2. P. 21–35. DOI: 10.24411/1932-2321-2020-12002.
- Ulasen A.F., Andreeva O.N., Ekshembiev S.Kh., Berger E.G. Determination of the permissible level of degradation of the multiprocessor matrix of the information and control system. Information-measuring and Control Systems. 2022. V. 20. № 1‑2. P. 101−104. DOI: https://doi.org/10.18127/j20700814-202201-10 (in Russian)