V.M. Antoshina1, D.I. Bukhanets2, V.S. Smirnov3, I.B. Zager4, V.B. Tikhonov5, V.L. Yusha6
1–3 “Academician A.L. Mints Radiotechnical Institut” JSC (Moscow, Russia)
4 Lomonosov Moscow State University (Moscow, Russia),
5 Yaroslavl Higher Military School of Air Defense (Yaroslavl, Russia),
6 Omsk State Technical University (Omsk, Russia)
Currently, the scientific and methodological apparatus that allows to reliably assess the reliability indicators of the radar model, taking into account the thermal processes of the receiving and transmitting complexes at a given time interval, has not been fully developed and does not provide the required accuracy and efficiency. Therefore, the task of developing a model of reliability of a high-potential real-time radar in the most heat-stressed operating modes based on thermal processes of receiving and transmitting complexes is relevant.
The aim of the work is to develop a thermal model of radar reliability, which will be able to monitor the technical condition of the equipment in real time and make recommendations for improving (maintaining) the operational readiness coefficient.
The article discusses a method for assessing the reliability of radar using a model of thermal processes of receiving and transmitting complexes. The thermal model is based on a system of first-order differential equations describing the temperature change of each power amplification unit when the radar is operating in a certain mode. This takes into account the mutual influence of the temperature of adjacent blocks on each other. The thermal model makes it possible to predict the maximum permissible operating time of the power amplification units of the station in the most heat-stressed modes. To obtain high-precision estimates of radar reliability indicators as a complex technical system, aggregation of a static (known) reliability model and a thermal model is proposed.
The results of the work can be used to refine the reliability indicators of a high-potential radar at the stages of testing and operation.
Antoshina V.M., Bukhanets D.I., Smirnov V.S., Zager I.B., Tikhonov V.B., Yusha V.L. Thermal model of reliability of high-potential radar in real time. Science Intensive Technologies. 2022. V. 23. № 5. P. 81−91. DOI: https://doi.org/10.18127/j19998465-202205-11 (in Russian)
- Logovskij A.S., Antoshina V.M. Obespechenie trebovanij k nadezhnosti izdeliya: poyasnitel'naya zapiska k eskizno-tekhnicheskomu proektu OKR. Kn. 14. CH.2. M.: AO RTI, 2020. 194 s. (in Russian).
- Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha. M.: Energiya. 1975 (in Russian).
- IEC 61800-7-202, ed. 1.0 (2007-11)
- D'yarmati I. Neravnovesnaya termodinamika. Teoriya polya i variacionnye principy. M.: Mir. 1974 (in Russian).
- Gojdenko V.K. Kompleksnaya teplovaya model' programmno-apparatnogo kompleksa svyazi. Sistemy upravleniya, svyazi i bezopasnosti. 2019. № 1 (in Russian).
- Rapoport E.Ya., Pleshivceva Yu.E. Metod mnogokriterial'noj optimizacii upravlyaemyh sistem s raspredelennymi parametrami. Trudy SPIIRAN. 2018. Vyp. 5(60). S. 64–96 (in Russian).
- Baskakov A.P., Berg B.V., Vitt O.K., Kuznecov Yu.V., Fillipovskij N.F. Teplotekhnika: Uchebnik dlya vuzov. M.: Energoatomizdat. 1991. S. 111 (in Russian).
- Orlov A.I. Prikladnaya statistika: Uchebnik dlya vuzov. M.: Ekzamen. 2006. 671 s. (in Russian).
- Zager I.B., Perlov A.Yu., Ermakov A.V., Timoshenko A.V. Modeling of Thermal Processes in Multichannel Radars in Heat-Stressed Operation Modes, 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications SYNCHROINFO. 2021. P. 1–6. DOI: 10.1109/SYNCHROINFO51390.2021.9488415.
- Holodil'nye mashiny. Pod. red. L.S. Timofeevskogo. – SPb.: Politekhnika. 1997. 992 s. (in Russian).
- Holodil'nye mashiny. Spravochnik. Pod. red. A.V. Bykova. M.: Legkaya i pishchevaya promyshlennost'. 1982. 224 s. (in Russian).