A.O. Smirnov1, O.E. Dick2, E.A. Frolova3, V.E. Titov4
1–4 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)
The creation of new designs of small-sized electrical measuring devices raises questions about the applicability of old methods of processing output signals. In particular, is it possible to process the time series of the output signals of the device under study using standard methods of mathematical statistics? The paper investigates the time series of output signals of a microelectromechanical accelerometer for the presence of signs of chaotic determinism in it. The results of applying the method of reconstruction of the attractor of a nonlinear dynamic system to the data under study are presented. It is shown that it is impossible to determine one of the indicators of the measure of complexity and randomness of non-stationary signals – the magnitude of the correlation dimension. As a result, it is concluded that there are no signs of chaotic determinism in the analyzed signals, therefore, the presented signals can be processed using mathematical statistics methods. The obtained results allow us to conclude that there is no need to make significant changes in the organization of production of measuring devices based on the studied accelerometer, since there is no need to fundamentally change the methods of processing output signals.
Smirnov A.O., Dick O.E., Frolova E.A., Titov V.E. Investigation of the micro-electromechanical accelerometer as a nonlinear dynamic system. Science Intensive Technologies. 2021. V. 22. № 8. P. 80−86. DOI: https://doi.org/10.18127/j19998465-202108-12 (in Russian)
- Matveev V.V, Raspopov V.Ya. Osnovy postroeniya besplatformennyh inercial'nyh navigacionnyh sistem. SPb.: GNC RF OAO «Koncern «CNII «Elektropribor». 2009. 280 s. (in Russian).
- Lawrence A. Modern Inertial Technology: Navigation, Guidance, and Control. Springer. 2012. 278 p.
- Granovskij V.A. Vybor kategorii modeli tekhnicheskogo ustrojstva v svyazi s analizom vremennogo ryada dannyh. Modelirovanie i situacionnoe upravlenie kachestvom slozhnyh sistem. SPb.: GUAP. 2019. S. 123–125 (in Russian).
- Anishchenko V.S., Vadivasova T.E., Shimanskij-Gajer L. Dinamicheskoe i statisticheskoe opisanie kolebatel'nyh sistem. Pod red. V.S. Anishchenko. M.: NIC «Regulyarnaya i haoticheskaya dinamika»; Izhevsk: Institut komp'yuternyh issledovanij. 2005. 156 s. (in Russian).
- Anishchenko V.S. Slozhnye kolebaniya v prostyh sistemah. M.: Izdatel'skaya gruppa URSS. 2009. 320 s. (in Russian).
- Anishchenko V.S., Astahov V.V., Vadivasova T.E. Regulyarnye i haoticheskie avtokolebaniya. Sinhronizaciya i vliyanie fluktuacij: monografiya. Dolgoprudnyj: Izdatel'skij Dom «Intellekt». 2009. 312 s. (in Russian).
- Dick O.E. Wavelet and recurrence analysis of EEG patterns of subjects with panic attacks. Studies in Computational Intelligence. 2020. V. 856. P. 172–180.
- Dik O.E., Glazov A.L. Primenenie analiza sovmestnyh rekurrentnostej k ocenke fazovoj sinhronizacii fiziologicheskih signalov. Zhurnal tekhnicheskoj fiziki. 2021. T. 91. № 12. S. 2045–2058 (in Russian).
- Titov V.E., Dick O.E. Computational evaluation of the effectiveness of therapy method with help recurrent analysis. Journal of Physics: Conference Series. 2021. V. 1889. P. 042092.
- Grassberger P., Procaccia I. Measuring the strangeness of strange attractors. Physica D. Nonlinear Phenomena. 1983. V. 9. P. 189– 208.
- Takens F. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Lecture Notes in Mathematics (D. Rand, L. S. Young, eds.). 1981. V. 898. Springer-Verlag. Berlin. P. 366–381.
- Kantz H., Schreiber T. Nonlinear Time Series Analysis (2 ed.). Cambridge Univ. Press, Cambridge. 2004. 388 p.
- Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. 1986. V. 33. P. 1134– 1140.
- Kennel M.B., Brown R., Abarbanel H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992. V. 45. P. 3403–3411.
- Hegger R., Kantz H., Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos. 1999. V. 9. P.413.