350 rub
Journal Science Intensive Technologies №8 for 2021 г.
Article in number:
Synthesis of non-stationary continuous nonlinear control systems by the generalized Galerkin method
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202108-11
UDC: 681.5.013
Authors:

V.F. Shishlakov1, N.V. Reshetnikova2, E.Yu. Vataeva3, D.V. Shishlakov4

1–4 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

Abstract:

Non-stationary automatic control systems (ACS) are systems whose parameters change over time. This type of system has a mathematical model described by differential equations with variable parameters. As a rule, the parameters of the elements and devices included in the ACS, to one degree or another, depend on time, in other words, the system in the general case is non-stationary. This dependence may be due to the presence of elements in the system, the operation of which directly depends on time or is the cause of heating or operational wear of the elements that make up the ACS. The presence of nonstationarity in systems complicates the methods of their analysis, synthesis and modeling. The real characteristics of most elements of automatic control systems have nonlinear static and dynamic characteristics, therefore, the complexity of the synthesis of nonlinear nonstationary control systems is due to the fact that there are no unified approaches to solving this problem. The time dependence of the system parameters limits the possibility of a one-time solution of the controller synthesis problem, since the ACS operation modes determined by its nonstationarity, as a rule, do not make it possible to ensure the specified quality indicators of its operation for all modes. In this connection, below we consider the solution to the problem of synthesizing the control laws of the controller for nonlinear non-stationary ACS. As a mathematical apparatus for solving the synthesis problem, it is proposed to use the inversion of the direct variational analysis method – the generalized Galerkin method – to solve the problem. This makes it possible to completely algebraize the solution of the problem for the investigated class of ACS. Thus, the paper offers options for obtaining the parameters of the controller applicable to systems with the property of nonstationarity.

Pages: 75-79
For citation

Shishlakov V.F., Reshetnikova N.V., Vataeva E.Yu., Shishlakov D.V. Synthesis of non-stationary continuous nonlinear control systems by the generalized Galerkin method. Science Intensive Technologies. 2021. V. 22. № 8. P. 75−79. DOI: https://doi.org/10.18127/j19998465-202108-11 (in Russian)

References
  1. Zverev I.I., Kokonin S.S. Proektirovanie aviacionnyh koles i tormoznyh sistem. M.: Mashinostroenie. 1973. 224 s.
  2. Shishlakov V.F., Shishlakov A.V., Timofeev S.S. Sintez SAU pri razlichnyh vidah approksimacii nelinejnyh harakteristik: teoriya i praktika: Monografiya. Pod red. V.F. Shishlakov. S.-Peterb. gos. un-t aerokosm. priborostroeniya. SPb.: Izd-vo GUAP. 2017. 151 s. (in Russian).
  3. Nikitin A.V., Shishlakov V.F. Parametricheskij sintez nelinejnyh sistem avtomaticheskogo upravleniya: Monografiya. Pod red. V.F. Shishlakov. S.-Peterb. gos. un-t aerokosm. priborostroeniya. SPb.: Izd-vo GUAP. 2003. 353 s. (in Russian).
  4. Shishlakov V.F., Reshetnikova N.V., Vataeva E.Yu., Shishlakov D.V. Obshchaya skhema resheniya zadachi sinteza nelinejnyh nestacionarnyh SAU vo vremennoj oblasti. Datchiki i sistemy. 2020. № 7(249). S. 12–16. DOI 10.25728/datsys.2020.7.3 (in Russian).
  5. Shishlakov V.F. Sintez nelinejnyh SAU s razlichnymi vidami modulyacii: Monografiya. S.-Peterb. gos. un-t aerokosm. priborostroeniya. SPb.: Izd-vo GUAP. 1999. 267 s. (in Russian).
  6. Vataeva E.Y., Shishlakov V.F., Shishlakov D.V., Reshetnikova N.V. Parametric Synthesis of Nonlinear Automatic Control Systems with Polynomial Approximation. 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019), Sankt-Peterburg, 03–07 iyunya 2019 goda. SPb.: Institute of Electrical and Electronics Engineers Inc., 2019. P. 8840123. DOI 10.1109/WECONF.2019.8840123.
  7. Shishlakov V., Vataeva E., Reshetnikova N., Shishlakov D. Synthesis of control laws of electromechanical systems under polynomial approximation of characteristics of nonlinear elements. MATEC Web of Conferences: 13, St. Petersburg, 18–21 aprelya 2018 goda. St. Petersburg, 2018. P. 2006. DOI 10.1051/matecconf/201816102006.
  8. Shishlakov V.F., Anisimova E.V.  Sintez parametrov SAU pri approksimacii nelinejnyh harakteristik irracional'noj funkciej obobshchennym metodom Galerkina. Zavalishinskie chteniya 14: Sb. dokladov. Sankt-Peterburg. 07–11 aprelya 2014 goda. Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet aerokosmicheskogo priborostroeniya. 2014. S. 111–115 (in Russian).
  9. Shishlakov V.F., Anisimova E.V., Shishlakov A.V., Shishlakov D.V. Sintez parametrov zakona upravleniya dlya nelinejnyh SAU pri razlichnyh vidah approksimacii harakteristik. Izv. vuzov. Priborostroenie. 2015. T. 58. № 9. S. 701–706. DOI 10.17586/0021-34542015-58-9-701-706 (in Russian). 
  10. Ismatovich F.S. Synthesis of an automatic control system with pulse-width modulation according to the speed criterion. 2020 International Conference on Information Science and Communications Technologies, ICISCT 2020, Tashkent, 04–06 noyabrya 2020 goda. Tashkent, 2020. P. 9351393. DOI 10.1109/ICISCT50599.2020.9351393.
  11. Ushakov V.A. Development Simulink-model for Solving the Problem of Analysis and Synthesis of Nonlinear Automatic Control Systems. 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019), Sankt-Peterburg, 03–07 iyunya 2019 goda. Sankt-Peterburg: Institute of Electrical and Electronics Engineers Inc., 2019. P. 8840635. DOI 10.1109/WECONF.2019.8840635.
Date of receipt: 29.10.2021
Approved after review: 19.11.2021
Accepted for publication: 24.11.2021