350 rub
Journal Science Intensive Technologies №6 for 2021 г.
Article in number:
Modeling the behavior of hydrodynamic dispersion by solving boundary value problems
Type of article: scientific article
DOI: https://doi.org/10.18127/j19998465-202106-05
UDC: 621.391
Authors:

A.N. Kulikov1, A.K. Gorbunov2, N.A. Silaeva3, A.P. Korzhavyi4

1 Kaluga State University named after K.E. Tsiolkovski (Kaluga, Russia)

2–4 Kaluga Branch of the Bauman Moscow State Technical University (Kaluga, Russia)

Abstract:

The phenomenon of hydrodynamic dispersion is a complex type of mass transfer that depends on many factors. The paper considers one of the methods for solving boundary value problems for some particular cases of the hydrodynamic dispersion equation. The method is based on the representation of solutions of differential equations of parabolic type in the form of series in generalized Bers powers. As a result of investigations from the general equation of hydrodynamic dispersion in radial filtration flows, equations have been obtained that allow the application of this method. An example of solving a specific boundary value problem for one of the equations is given. The fact is confirmed that the proposed method can significantly reduce computational difficulties, since ultimately, reduces to the construction of generalized Bers degrees representable in terms of integrals of combinations of exponential and power functions. In addition, the analytical expressions of these functions can be used to solve inverse problems, i.e. when determining the coefficients of mass transfer.

Pages: 46-53
For citation

Kulikov A.N., Gorbunov A.K., Silaeva N.A., Korzhavyi A.P. Modeling the behavior of hydrodynamic dispersion by solving boundary value problems. Science Intensive Technologies. 2021. V. 22. № 6. P. 46−53. DOI: https://doi.org/10.18127/j19998465-202106-05 (in Russian)

References
  1. Zapatrika N.V. Sovremennye podhody k modelirovaniyu dinamiki slozhnyh sistem . Naukoemkie tekhnologii. 2012. T. 13. № 8. S. 46– 52 (in Russian).
  2. Golovikov M.I. Sluchajnye bluzhdaniya i proizvedenie Adamara stepennyh ryadov . Obozrenie promyshlenno-prikladnoj i promyshlennoj matematiki. 2011. T. 18. Vyp. 3. S. 505–506 (in Russian).
  3. Tihonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnyh zadach. M.: Nauka. 1979. 320 s. (in Russian).
  4. Ugol'nickij G.A. Imitacionnye i optimizacionnye modeli slozhnyh sistem s uchetom ih struktury . Upravlenie bol'shimi sistemami. 2011. Vyp. 31. S. 799–816 (in Russian).
  5. Kochkarov A.A., Malineckij G.G. Upravlenie bezopasnost'yu i stojkost'yu slozhnyh sistem v usloviyah vneshnih vozdejstvij . Problemy upravleniya. 2005. № 5. S. 70–76 (in Russian).
  6. Bear J. Dynamics of Fluids in Porous Media. New York: American Elsevier. 1972. 764 p.
  7. Nikolaevskij V.N. Konvektivnaya diffuziya v poristyh sredah . PMM. 1959. T. 23. № 6. S. 1042–1050 (in Russian).
  8. Ber Ya., Zaslavskij D., Irmej S. Fiziko-matematicheskie osnovy fil'tracii vody. M.: Mir. 1971. 451 s. (in Russian).
  9. Verigin N.N., Vasil'ev S.V., Sarkisyan V.S., Sherzhukov B.S. Gidrodinamicheskie i fiziko-himicheskie svojstva gornyh porod. M.: Nedra. 1977. 271 s. (in Russian).
  10. 10.Kulikov A.N. Uravneniya radial'noj gidrodinamicheskoj dispersii i ego obshchie integraly . Dvizheniya rastvorimyh primesej v fil'tracionnyh potokah. Tula. 1983. S. 15–20 (in Russian).
  11. Kulikov A.N., Grishina L.V. Stacionarnaya radial'naya dispersiya pri bol'shih skorostyah fil'tracii . Teoreticheskie osnovy gidrodinamiki. Tula. 1980. S. 75–79 (in Russian).
  12. Kulikov A.N., Gorbunov A.K., Ovcharenko I.N. Stacionarnaya gidrostaticheskaya dispersiya v mnogochislennyh plastah s rastvori-moj podoshvoj . Aktual'nye problemy gumanitarnyh i estestvennyh nauk. 2015. №04(75). Ch. 1. S. 17–19 (in Russian).
  13. Kulikov A.N., Gorohov V.A. O nahozhdenii sobstvennyh chisel zadachi Shturma–Liuvillya uravneniya radial'noj gidrostaticheskoj dispersii . Teoreticheskie osnovy gidrodinamiki. Tula. 1981. S. 94–99 (in Russian).
  14. Kulikov A.N., Gorbunov A.K., Ovcharenko I.N., Lukoshov I.A. O nahozhdenii sobstvennyh chisel zadachi Shturma–Liuvillya uravne-niya radial'noj mekhanicheskoj dispersii. Naukoemkie tekhnologii v priboro- i mashinostroenii i razvitie innovacionnoj deya-tel'nosti v vuze: Materialy Vserossijskoj nauchno-tekhnicheskoj konferencii. M. 2017. T. 3. S. 170–171 (in Russian).
  15. Kulikov A.N., Gorbunov A.K., Ovcharenko I.N., Rodin V.S., Kuznecova A.A. O normirovke sobstvennyh funkcij uravneniya radi-al'noj mekhanicheskoj dispersii . Elektronnyj zhurnal: nauka, tekhnika i obrazovanie. 2017. № 2. S. 213–218 (in Russian).
  16. Gladyshev Yu.A. Metod obobshchennyh stepenej Bersa i ego prilozhenie v matematicheskoj fizike: Monografiya. Kaluga: Izd-vo Kaluzhskogo gosudarstvennogo un-ta im K.E. Ciolkovskogo. 2011. 204 s. (in Russian).
  17. Gladyshev Yu.A. Formalizm Bel'trami-Bersa i ego prilozhenie v matematicheskoj fizike. Kaluga: Izd-vo KGPU im. K.E. Ciol-kovskogo. 1997. 259 s. (in Russian).
Date of receipt: 8.06.2021
Approved after review: 23.06.2021
Accepted for publication: 24.08.2021