350 rub
Journal Science Intensive Technologies №4 for 2020 г.
Article in number:
Physico-technological principles of construction and operation of high-performance information systems
Type of article: scientific article
DOI: 10.18127/j19998465-202004-06
UDC: 681.518.9; 621.384.3
Authors:

S.S. Antsyferov – Dr.Sc., (Eng.), Professor, 

Metrology and Standardization Department, MIREA – Russian Technological University (Mocsow)

E-mail: c_standard@fel.mirea.ru

K.N. Fazilova – Assistant, Lecturer,

Metrology and Standardization Department, MIREA – Russian Technological University (Moscow)

E-mail: fazilova@mirea.ru

D.S. Trofimov – General Director, NPP «Toriy» (Moscow)

Abstract:

This article defines basic principles of construction and operation of high-performance systems using computer technologies, special attention is paid to technologies for creating nano-PC, which constitute one of the most promising fields of innovation: technology for creating quantum computers using nuclear magnetic resonance, creation of computers based on DNA, i.e., biomolecular computers, neural computers. Supercomputers (SC) are the most high-power computing systems in the world in terms of performance and memory. The basis of SC improvement strategy is the process of constant miniaturization of element base, currently created with «silicon» technologies. The basis for the construction of a quantum computer are unique quantum mechanical effects, such as interference, parallelism, superposition, entanglement, performing completely new types of calculations, which, even in principle, can not be performed on a classical computer. Specialists from leading countries of the world are conducting research on creation of technologies for information storage and processing in biological systems, as well as creation of biocomputers: genetic (DNA / RNA) and cellular. A DNA or biomolecular computer is a combination of specially selected DNA strands that perform specific computational operations.

Neural computers are based on idea of linking a large number of elements to build associative networks that allow to effectively accumulate and use knowledge to solve problems of classification, approximation, pattern recognition, decision-making. This direction has a strong theoretical base, based on biological models of the nervous system, in particular, neural structures of brain, theory of formal neurons, dynamic models of neural networks, described by a variety of systems of neural levels, methods of structured representation of knowledge in associative networks with a hierarchical structure, methods of teaching associative networks.

Combination of bioinformatics and nanobiotechnology promises great prospects, which will allow creating intelligent implantable nanosystems to control state of organism at cellular level.

Currently, the possibilities of «silicon» technologies are not yet fully exhausted and in the presence of large production capacities, wellestablished production, specialists, infrastructure, heated markets, this direction will long occupy a dominant position in the market. The development of the nanometer range will require the creation of fundamentally new physical foundations and technologies for the production of the elemental base of supercomputers, which are seen in general terms now.

The creation of the «element base» of the quantum computer is intensively engaged in a number of research organizations of the leading countries of the world, which creates good conditions for the practical implementation of completely new types of calculations, in principle, impossible for classical computers.

Achievements of bioinformatics in combination with nanobiotechnology will lead in the near future to the creation of intelligent implantable nanosystems that provide control of the body at the cellular level.

Pages: 55-65
References
  1. Ancyferov S.S. Obshchie principy postroeniya i zakonomernosti funkcionirovaniya intellektual'nyh sistem. Iskusstvennyj intellekt. 2011. № 3. S. 6–15  (In Russian).
  2. Ancyferov S.S. Voprosy metrologicheskogo obespecheniya intellektual'nyh sistem. Mir izmerenij. 2012. № 5. S. 46–51 (In Russian).
  3. Ancyferov S.S. Standartizaciya pokazatelej kachestva produkcii kognitivnyh tekhnologij. Naukoemkie tekhnologii. 2014. T. 15. № 7. S.7–13 (In Russian).
  4. Ancyferov S. S., Afanas'ev M.S., Sigov A.S. Metrologicheskoe obespechenie naukoemkih tekhnologij. M.: Izd. IKAR. 2016. 224 c. (In Russian).
  5. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Pokazateli neravnovesnoj ustojchivosti kognitivnyh sistem. Problemy iskusstvennogo intellekta. 2016. № 2 (3). S. 4–11 (In Russian).
  6. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Standartizaciya pokazatelej neravnovesnoj ustojchivosti kognitivnyh sistem. Naukoemkie tekhnologii. 2017.  № 5. S. 15–20 (In Russian).
  7. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Opredelenie pokazatelej ustojchivogo funkcionirovaniya nejropodobnyh sistem. Materialy XXV Vserossijskogo seminara «Nejroinformatika, ee prilozheniya i analiz dannyh», 29 sentyabrya – 1 oktyabrya 2017 g., Krasnoyarsk: Institut vychislitel'nogo modelirovaniya SO RAN. 2017. S. 8–13 (In Russian).
  8. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Imitacionnaya dinamicheskaya model' kognitivnyh sistem. Problemy iskusstvennogo intellekta. 2017. № 2 (5). S. 32–39 (In Russian).
  9. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Principy postroeniya i funkcionirovaniya intellektual'nyh sistem obrabotki informacii prostranstvennovremennyh polej. Naukoemkie tekhnologii. 2018. № 2. S. 36–45 (In Russian).
  10. Ancyferov S.S., Fazilova K.N. Ocenka pokazatelej ustojchivogo funkcionirovaniya intellektual'nyh sistem s aktivnymi elementami. Informatika i tekhnologii. Innovacionnye tekhnologii v promyshlennosti i informatike (RNTK FTI-2018) Sbornik trudov konferencii. 2018. S. 286–291 (In Russian).
  11. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Modelirovanie neravnovesnoj ustojchivosti kognitivnyh sistem. Modelirovanie neravnovesnyh sistem: Materialy XXI Vserossijskogo seminara, 5–7 oktyabrya 2018 g., Krasnoyarsk: Institut vychislitel'nogo modelirovaniya Sibirskogo otdeleniya Rossijskoj akademii nauk. 2018. S. 9–14 (In Russian).
  12. Ancyferov S.S., Fazilova K.N., Rusanov K.E. Ocenka neravnovesnoj ustojchivosti kognitivnyh sistem. Naukoemkie tekhnologii. 2018. № 11. S. 14–19  (In Russian).
Date of receipt: 19 мая 2020 г.