350 rub
Journal Science Intensive Technologies №8 for 2016 г.
Article in number:
Modeling of surface polishing current-carrying sectional curved waveguide
Authors:
V.V. Zverintsev - Post-graduate Student, Reshetnev Siberian State Aerospace University (Krasnoyarsk). E-mail: hopmxod007@mail.ru L.V. Zverintseva - Ph. D. (Eng.), Associate Professor, Reshetnev Siberian State Aerospace University (Krasnoyarsk). E-mail: zverintsevalv@mail.ru G.V. Kochkina - Senior Lecturer, Reshetnev Siberian State Aerospace University (Krasnoyarsk). E-mail: kochkina@gmail.com
Abstract:
The enterprises of the aerospace and electronic engineering industries there is a problem obtaining the current-carrying surfaces of thin-walled curved waveguides and straight form. The presence of losses in the lines of the microwave energy transmission in the preparation of high and medium power leads to heating of the line, and in the preparation of very low self-noise power lines caused losses are commensurate with the desired signal. The required surface roughness of the inner waveguide at the microwave frequency power: Ra 0.40-0.20 microns at 3-10 GHz; Ra 0.100-0.025 microns is more than 10 GHz [1]. Providing roughness less inside the noncircular waveguide Ra 0,63 microns presently difficult. Proposed polishing sectional curved waveguides abrasive paste it along with roundtrip processed channel. A computer model of pressure, withstand the waveguide walls, and strength calculations. Experiments confirming the possibility of a new process to reduce the current-carrying surface roughness.
Pages: 57-60
References

 

  1. Zverinceva L.V., Sysoev S.K. Abrazivnoe polirovanie zagotovok volnovodov ehlastichnym instrumentom. Krasnojarsk: Sib. gos. aehrokosmich. un-t.  2013. 180 s.
  2. GOST 20900-75. Truby volnovodnye mednye i latunnye prjamougolnye. M.: Izdatelstvo standartov. 1985. 13 s.
  3. ST 92-8391-73. EHlementy volnovodnykh traktov. M.: OOO «Radiostandart-CNIIREHS». 54 s.
  4. Zverincev V.V., Zverinceva L.V., Kochkina G.V., Sysoev S.K. Kompjuternoe modelirovanie vkhodnogo davlenija processa polirovanija // Materialy XIX mezhdunar. nauchn. konf. «Reshetnevskie chtenija». Krasnojarsk: SibGAU. 2015. S. 398−400.
  5. Maity K.P., Tripathy K.C. Modelling And Optimization Of Abrasive Flow Machining Of Al Alloy // International Journal of Advanced Manufacturing Technology. 2015. P. 477−481.
  6. Das M., Jain V.K., Ghoshdastidar P.S. Computational fluid dynamics simulation and experimental investigations into the magnetic-field-assisted nano-finishing process. 2012.
  7. Cherian J., Dr. Issac J.M. Effect of Process Variables in Abrasive Flow Machining // International Journal of Emerging Technology and Advanced Engineering. February 2013. V. 3. № 2. P. 554−557.
  8. Kermouche G., Rech J., Dumont F. Investigation of the surface integrity induced by abrasive flow machining on AISI D2 hardened steel // International Journal of Materials and Product Technology. 2013. V. 46. № 1. P. 19−31.
  9. Sharma A.K., Rajesha S., Gudipadu V., Kumar P. Experimental investigations into ultrasonic assisted abrasive flow machining (UAAFM) process // International Journal of Advanced Manufacturing Technology. 2015. V. 3. P. 84−101.
  10. Gudipadu V., Sharma A.K., Singh N. Simulation of media behavior in vibration assisted abrasive flow machining // Simulation Modeling Practice and Theory. 2015. V. 51. P. 1−13.