350 rub
Journal Science Intensive Technologies №2 for 2016 г.
Article in number:
Using fuzzy set logic to demonstrate common principles that are used in the description of real-life system-s object structure based on the examples of technical and economic system-s objects
Keywords:
fuzzy logic
membership function
gradation degree
optimization criteria
feasible and effective solution region
Authors:
T.G. Artyushina - Ph. D. (Eng.), Associate Professor, Department «Higher Mathematics», Plekhanov Russian University of Economics (Moscow). E-mail: t.g.art@yandex.ru
Abstract:
Several examples in this article demonstrate how a particular scheme (based on fuzzy set logic) can be used to describe and analyze objects of technical and economic system. This scheme allows to formally describe qualitative facts by using the quantitative scale. Two objects are analyzed: first object belongs to the technical system and second object belongs to the economic system. Firstly two objects are described via simplified scheme, where sets of solutions are clustered as «excellent», «good» and «bad» with only two variables: «X1» and «X2». The goal in this step is to minimize the criteria for optimization. It-s also demonstrated in this article, that the gradation degree can be enlarged if necessary. For example, we are analyzing the investors - risks for the economic model, and the elaborate model of risks - gradation can be used («extremely low», «low», «medium», «high», «unacceptable»). The same principle is used when working with the technical system: the choice of a boat-s powerplant as the object of the technical system, where the criteria could be «pass», «high-probability pass», «pass with limitations» and «can-t be used». In this article there were also demonstrated the most characteristic membership functions. Therefore, based on the examples given in the article, we can conclude that objects of different nature can be described and analyzed by same scheme using the fuzzy set logic.
Pages: 66-69
References
- Altunin A.E., Semukhin M.V. Modeli i algoritmy prinjatija reshenijj v nechetkikh uslovijakh. Tjumen: Tjumenskijj gosudarstvennyjj universitet.2000.352 s.
- Artjushina T.G. Opisanie i optimizacija ehlementa mnogourovnevojj sistemy «Sudno» na osnove teorii nechetkikh mnozhestv. SPb.: Morskojj Vestnik.2010.№ 4(36). S. 99−101.
- Artjushina T.G. Ispolzovanie matematiki nechetkikh mnozhestv dlja opisanija ehkonmicheskikh i finansovykh sistem // Materialy Mezhdunar. nauchno-praktich. konf., posvjashhennojj 105-letiju REHU im. G.V. Plekhanova.Moskva.: 2012. S. 279−289.