350 rub
Journal Science Intensive Technologies №7 for 2015 г.
Article in number:
Stability analysis of nonlinear soliton models
Authors:
О.V. Druzhinina - Dr. Sc. (Phys.-Math.), Professor, Main Research Scientist, Institute of Informatics Problems of RAS (Moscow). E-mail: ovdruzh@mail.ru Z.L. Shulimanova - Dr. Sc. (Phys.-Math.), Head of Department, Moscow State University of Railway Engineering. E-mail: zinaida110@yandex.ru V.L. Vorontsova - Ph. D. (Phys.-Math.), Associate Professor, Institute of Management, Economics and Finance (Kazan?) T.F. Klimova - Ph. D. (Eng.), Associate Professor, Moscow State University of Railway Engineering
Abstract:
Questions of stability of soliton models are considered. A comparative analysis of solitons stability concepts is presented and the modifications of the stability and instability basic theorems are given in accordance with two measures: Lyapunov-Movchan theorem on stability and Chetaev-Movchan theorem on instability. For stability analysis method of A.A. Shestakov of mathematical modeling of distributed systems by the aid of abstract evolutional equations is used. The global asymptotic stability of soliton solutions is investigated on the basis of Lyapunov functionals properties. Obtained results can be used in stability problems of nonlinear dynamical models.
Pages: 59-64
References

 

  1. Kalodzhero F., Degasperis A. Spektralnye preobrazovanija i solitony. M.: Mir. 1985.
  2. Njuehll A. Solitony v matematike i fizike. M.: Mir. 1989.
  3. Rybakov JU.P.Ustojjchivost mnogomernykh solitonov v kiralnykh modeljakh i gravitacii// Itogi nauki i tekhniki. Ser. Klassicheskaja teorija polja i teorija gravitacii. T. 2. M.: VINITI. 1991.
  4. Makhankov V.G., Rybakov JU.P., Sanjuk V.I. Lokalizovannye netopologicheskie struktury: postroenie reshenijj i problemy ustojjchivosti // Uspekhi fizicheskikh nauk. 1994. T. 164. № 2. S. 121−148.
  5. Ljapunov A.M. Obshhaja zadacha ob ustojjchivosti dvizhenija. M. - L.: Gostekhizdat. 1955.
  6. Zubov V.I. Metody A.M. Ljapunova i ikh primenenie. L.: Izd-vo LGU. 1957.
  7. Demidovich B.P. Lekcii po matematicheskojj teorii ustojjchivosti. M.: Nauka. 1967.
  8. SHestakov A.A. Obobshhennyjj prjamojj metod Ljapunova dlja sistem s raspredelennymi parametrami. M.: URSS. 2007.
  9. Kato T.,Martynyuk A.A.,Shestakov A.A. Stability of motion of nonautonomous systems (method of limiting equations). Amsterdam: GordonandBreach. 1996.
  10. Druzhinina O.V. Ustojjchivost i stabilizacija po ZHukovskomu dinamicheskikh sistem: Teorija, metody i prilozhenija. M.: URSS. 2013.
  11. Druzhinina O.V., SHestakov A.A. Obobshhennyjj prjamojj metod Ljapunova issledovanija ustojjchivosti i pritjazhenija v obshhikh vremennykh sistemakh // Matem. sb. 2002. T. 193. № 10. S. 17−48.
  12. Druzhinina O.V., SHestakov A.A. Vzaimosvjaz ustojjchivosti po ZHukovskomu s ponjatijami ustojjchivosti topologicheskojj dinamiki // Nelinejjnyjj mir. 2013. T. 11. № 7. S. 459−467.
  13. Druzhinina O.V., Afanaseva V.I. Issledovanie ustojjchivosti nekotorykh klassov raspredelennykh sistem // Nelinejjnyjj mir. 2010. T. 8. № 9. S. 554−562.
  14. Druzhinina O.V., SHulimanova Z.L., Masina O.N., Sadykova O.I., Kuzmina T.I., Ilina T.A. Ustojjchivost nelinejjnykh dinamicheskikh processov v ehkologii i fizike. M.: RGOTUPS. 2008.