350 rub
Journal Science Intensive Technologies №6 for 2015 г.
Article in number:
Features of manufacturing techniques three-dimensional electronic devices
Authors:
A.A. Kondrashin - Ph. D. (Eng.) Professor, Tsiolkovsky Russian State Technological University (MATI). E-mail: сondrashin@rambler.ru A.N. Lyamin - Ph. D. (Eng.), Associate Professor, Tsiolkovsky Russian State Technological University (MATI) V.V. Sleptsov - Dr. Sc. (Eng.) Professor, Tsiolkovsky Russian State Technological University (MATI) D.V. Makhno - master, Tsiolkovsky Russian State Technological University (MATI)
Abstract:
The purpose of the review consisting of four parts is definition of the main ways of development of manufacturing techniques of modern TEU: the quasi volume figures created from separate 2D modules (on the basis of rigid or flexible substrates); the rigid volume (3D) figures created layer-by-layer by means of 3D printers (or multipurpose devices) and ex-situ of technologies (addi-tional post-technologies) of processing of a surface; the rigid volume (3D) figures received by traditional industrial methods (molding, stamping, etc.) and technologies of processing of ex-situ of technologies of processing of a surface (3DMID). In the first part of the review: classification of TEU is made on: the quasi volume figures created from separate modules on the basis of the rigid and flexible 2D ases, the rigid volume (3D) figures created from separate elements on the basis of the rigid substrates received by traditional industrial methods (molding, stamping?) and the rigid volume (3D) figures created layer-by-layer by means of 3D printers or multipurpose devices. classification of the three-dimensional assembly bases by an arrangement of surfaces and installation of components on is made (2D, quasi 3D and 3D); the main characteristics of various methods of a 2D broadcast of images on quasi volume substrates (the maximum thickness of a layer, the contact existence, type of transfer of the printing image (fixed unstable) are defined; characteristics of methods of transfer (the minimum width of the line, thickness of a layer of the applied material and productivity) are defined; advantages and shortcomings of various fixed technologies (pattern (rotational and ploskopechatny), deep, high (flexography), offset, nanoprinting (thermoplastics and photopolymers)) production the kvaziobyyomnykh of figures on the basis of 2D substrates are considered. The considered production technologies of TEU by methods of the fixed press faces a number of the extremely difficult solved problems, the impossibility of formation of electronic structures on 3D surfaces is basic of which. In general the carried-out analysis showed that use of the above-mentioned analysed fixed technologies, doesn\'t allow to make volume figures of a difficult form in a continuous production cycle. In the second part of the review technologies of the unstable press (a jet, laser ablyation, thermotransfer transfer, matrix and an elektrografiya (light-emitting diode and laser), partially deprived of shortcomings of technologies of the fixed press will be considered. In thirds of part of the review the 3D technologies of the press (technology of pasting (alloyage) of powders and sheet materials, technology of thermal treatment of materials and stereolithograph) allowing to make TEU (cases of mobile phones, transistors, photonics products (lasers, optrons, etc.) will be considered. In the fourth part of the review the technologies 3D MID allowing to make 3D cases of objects on which are executed 3D about will be consider.
Pages: 38-47
References

 

  1. http://pcb-import.ru/3D-MID. Koncepcija tekhnologii 3D-MID.
  2. IPC-2222 «Standart po konstruirovaniju zhestkikh pechatnykh plat na organicheskojj osnove» SectionalStandardonRigidOrganicPrintedBoards.
  3. IPC-2223 «Standartpokonstruirovanijugibkikhpechatnykhplat» Sectional Design Standard for Flexible Printed Boards.
  4. Tekhnologii v proizvodstve ehlektroniki. CH. 3. Gibkie pechatnye platy / Pod obshh. red. A.M. Medvedeva i G.V. Mylova. M. «Gruppa IDT». 2008. 488 s.
  5. Medvedev A.M. Konstrukcii i principy izgotovlenija pechatnykh plat. Tekhnologi v ehlektronnojj promyshlennosti. № 4. 2011. S. 12−18.
  6. Mario Caironi. Printed Organic Electronics: Overview and Opportunities. Center for Nano Science and Technology@PoliMi Istituto Italiano di Tecnologia. Milan. Italy. 27 November 2013. S. 33.
  7. Nisan A. Organicheskaja i pechatnaja ehlektronika - novaja vetv razvitija. Informacionnyjj bjulleten. Poverkhnostnyjj montazh № 4(90) 2011. S. 14−19. Izdanie ZAO Ostek.
  8. Pechatnaja ehlektronika. Nauchno-issledovatelskijj institut innovacionnykh tekhnologijj. Ostek 2013/14. S. 12.
  9. Gudilin Dmitrijj. Rotacionnaja trafaretnaja pechat. Tekhnologija i oborudovanie. KompjuArt. № 1. 2007. S. 5−10.
  10. Vorozhcov A.L. Fleksografskaja pechat. Uchebnoe posobie. M. MGUP 2013. S. 137.
  11. Krebsetal. JournalofpolymersciencepartB: polymerphysics 2013. 51. S. 16−34.
  12. Oleg KHarin, EHmilis Suvejjzdis. Cifrovaja pechat. Osnovnye tekhnologii i oborudovanie. Ucheb. posobie. M: OOO Izdatelstvo «Nauchtekhlitizdat». 2012.