350 rub
Journal Science Intensive Technologies №5 for 2015 г.
Article in number:
Adoption of diagnostic decisions at endoscopic inspection on the basis of technology of fuzzy logic and interval Bayesian mechanisms of a conclusion
Authors:
N.T. Abdullaev - Ph. D. (Eng.), Associate Professor, Azerbaijan Technical University. E-mail: a.namik46@mail.ru O.A. Dyshin - Ph. D. (Phys.-Math.), Senior Research Scientist, Azerbaijan State Oil Academy M.I. Kerimova - Assistant, Department «Metrology and Standardization», Azerbaijan State Oil Academy
Abstract:
Research of the modern endoscopic equipment is an invasive method for differential diagnostics of bodies of the gastrointestinal highway, allowing to reveal stomach ulcers of a stomach and intestines, degree of expressiveness and extent of changes of a mucous membrane and other diseases. Using the statistical theory of recognition classification of diseases it is possible to carry out on known values of informative diagnostic signs of object, grouping values of these signs in classes. In case of lack of a statistical database about values of diagnostic signs of the studied body in medical diagnostics it is necessary to use the knowledge base of medical experts. Decision-making in systems of an indistinct logical conclusion means use of rules of indistinct production on the basis of which functions of accessory entrance and output a sign are formed with some degree of confidence. For differential diagnostics of a functional condition of bodies of the gastrointestinal highway on the basis of the constructed confidential intervals for aprioristic probabilities of considered diseases possibility of use of Bayesian mechanisms of a conclusion for adoption of diagnostic decisions is shown. Iterative application of the generalized integrated Bayesian schemes leads to the specified estimates of reliability of a disease of the studied patient on the set simptomokompleks of values of diagnostic signs and allows to consider various chances of confirmation or denial of a hypothesis of existence at the patient of this or that disease from considered set of gastrointestinal diseases.
Pages: 48-56
References

 

  1. Fishzon-Ryss JU.I., Ryss E.S. Gastroduodenalnye jazvy. L.: Medicina. 1978. 232 s.
  2. Grigorev P.JA. JAzvennaja bolezn zheludka i dvenadcatiperstnojj kishki v svete novykh predstavlenijj // Vrachebnoe delo. M.: Medicina. 1991. № 7. S. 8−12.
  3. Standarty (protokoly) diagnostiki i lechenie bolnykh s zabolevanijami organov pishhevarenija. Gosudarstvennyjj medicinskijj centr Minzdrava RF. 2002. 54 s.
  4. Kuznecov A.V., CHernov S.V. EHndoskopicheskie kamery serijj EHVK-103 i EHVK-1031C // Medicinskaja tekhnika. 2003. № 2. S. 48.
  5. Kuzmin-Kruteckijj M.I., Mazurov A.I., EHlinson M.B. Videosistemy dlja ehndoskopii // Medicinskaja tekhnika. 2003. № 4. S. 27−30.
  6. www.gastrosite.ru.
  7. Vetshev M.S., Krylov N.N. Analiz prichin smerti bolnykh s ostrojj bolju v zhivote // Rossijjskijj zhurnal Gastroehnterologii, Gepatalogii, Koloproktologii. 2005. № 4. S. 50−56.
  8. Grigorev P.JA., JAkovenko EH.P., JAkovenko A.V. Bolshie simptomy v gastroehnterologii // www.medi.ru ot 14.04.2005.
  9. ZHmudjak M.L., Povalikhin A.N., Strebukov A.V.i dr. Diagnostika zabolevanijj metodami teorii verojatnostejj. Barnaul: Alt. GTU. 2006. 168 s.
  10. ZHmudjak M.L., Povalikhin A.N., Lev G.SH. Primenenie verojatnostnykh metodov v diagnostike // Sb. materialov konf. «Diskretnyjj analiz i issledovanie operacijj». Novosibirsk: Institut matematiki. 2004. S. 203.
  11. Fukunaga A.K. Vvedenie v statisticheskuju teoriju raspoznavanija obrazov / Per. s angl. M.: Nauka. 1979. 367 s.
  12. Patrik EH. Osnovy teorii raspoznavanija obrazov / Per. s angl. M.: Sov. radio. 1980. 408 s.
  13. Loktjukhin V.N., Maljavin S.I., CHerepnin A.A. Osnovy matematicheskogo obespechenija podderzhki diagnosticheskikh reshenijj v biotekhnicheskikh sistemakh s ispolzovaniem nechetkojj logiki. Rjazan: Rjazanskijj gos. radiotekhnicheskijj un-t. 2009. 64 s.
  14. CHerepnin A.A. Modeli, algoritmy i sredstva podderzhki prinjatija diagnosticheskikh reshenijj pri ehndoskopicheskom obsledovanii na osnove tekhnologii nechetkojj logiki. Dis. - kand. tekhn. nauk. Rjazan. 2010. 203 s.
  15. Abdullaev N.T., Dyshin O.A., Abdullaeva G.EH. Netradicionnoe ispolzovanie formul Bajjesa dlja differencialnojj diagnostiki nervno-myshechnykh zabolevanijj // Biomedicinskaja radioehlektronika. 2014. № 1. S. 50−58.
  16. Zalozhenkova I.A., Parasjuk I.N. Integrirovannaja sistema proverki gipotez: programmno-algoritmicheskie sredstva // Kibernetika i sistemnyjj analiz. 1997. № 5. S. 50−58.
  17. Verevka O.V., Zalozhenkova I.A., Parasjuk I.N. Obobshhenie intervalnykh bajjesovskikh mekhanizmov vyvoda i perspektivy ikh ispolzovanija // Kibernetika i sistemnyjj analiz. 1998. № 6. S. 3−13.
  18. Verevka O.V., Zalozhenkova I.A., Parasjuk I.N. Intervalnye bajjesovskie mekhanizmy vyvoda i ikh prilozhenija // Problemy programmirovanija. 2000. № 1−2. S. 467−470.
  19. Leonenkov A.V. Nechetkoe modelirovanie v srede MATLAB i FuzzyTECH. SPb: BKHV-Peterburg. 2005. 736 s.
  20. KHejj Dzh. Vvedenie v metody bajjesovskogo statisticheskogo vyvoda / Per. s angl. M.: Finansy i statistika. 1987. 335 s.