350 rub
Journal Science Intensive Technologies №4 for 2015 г.
Article in number:
Increase of accuracy of the position of a repeater of communication on the unmanned aerial vehicle
Authors:
V.P. Vasiliev - Senior Research Scientist, Military Educational and Scientific Center «Zhukovsky-Gagarin Air Force Academy» (Voronezh). E-mail: Baltimor4@mail.ru A.V. Ponomarev - Ph. D. (Eng.), Associate Professor, Head of Department, Military Educational and Scientific Center «Zhukovsky-Gagarin Air Force Academy» (Voronezh). E-mail: Cycloida@mail.ru S.A. Dmitriev - Ph. D. (Eng.), Associate Professor, Military Educational and Scientific Center «Zhukovsky-Gagarin Air Force Academy» (Voronezh). E-mail: dsa_tambov@mail.ru
Abstract:
The repeater of communication and mobile object of a radio communication use the focused directed antenna systems. For orientation of antenna systems between a repeater of communication and mobile object of a radio communication it is necessary to use fixing systems, for example, satellite radio navigating systems and-or inertial navigating systems. Calculation of geometrical parametres of a radio line between the unmanned aerial vehicle and mobile object of a radio communication has been made. The given calculation shows that definition of a site of objects of a radio communication is not sufficient on certain distances between them. Therefore it is offered to raise accuracy of definition of a site of objects of a radio communication by data processing of satellite radio navigating system and inertial navigating systems by means of algorithm complexing, based on kalmanovsky filtrations. Research of algorithm offered by authors complexing the primary navigating data arriving from satellite radio navigating systems and inertial navigating systems, on a basis kalmanovsky filtrations has been made. Research was spent by means of computer modelling. In model of change of coordinates and projections of speed of movement of object of a radio communication readout at the moment of time were modelled as readout the gaussian casual processes with a stationary increment, by a known technique. Components of a vector of supervision were modelled taking into account presence «discrete the gaussian white noise» supervision. Schedules of dependence on time average the quadratic errors of measurements of coordinates and a prize owing to application of secondary data processing on the offered algorithm have been constructed. Were thus considered various average the quadratic errors discrete the gaussian white noise of supervision of projections of speed. Also the schedule of results of series of computer experiments has been constructed at a variation average the quadratic errors discrete the gaussian white noise of supervision of projections of speed. Computer modelling has shown that the offered algorithm provides a prize in accuracy of definition of co-ordinates several times, depending on conditions of its application.
Pages: 48-56
References

 

  1. SHHerbakov V. Bespilotniki kak sredstvo ustrashenija. Amerikancy rassmatrivajut BPLA v kachestve ugrozy nacionalnojj bezopasnosti // Materialy sajjta «Nezavisimoe voennoe obozrenie». 2009. Rezhim dostupa: http://www.aviaport.ru/ (data obrashhenija 17.03.2014).
  2. Pavlushenko M.I., Evstafev G.M., Makarenko I.K. Bespilotnye letatelnye apparaty: istorija, primenenie, ugroza rasprostranenija i perspektivy razvitija // Nauchnye zapiski PIR-Centra: Nacionalnaja i globalnaja bezopasnost. Moskva. 2004. № 2(26). 611 s.
  3. Popov V., Fetutdinov D. Tendencii razvitija sistem peredachi dannykh pri ispolzovanii bespilotnykh letatelnykh apparatov // Zarubezhnoe voennoe obozrenie. 2006. № 4. S. 47−51.
  4. Unmanned Systems Integrated Roadmap FY 2013−2038. Reference Number: 14-S-0553. 154 p.
  5. Searcher MKIIJ. Section 1 - Technical Specification. Chapter 4 - Data Link System.
  6. Veselovskijj K. Sistemy podvizhnojj radiosvjazi / Per. s polsk. I.D. Ruzinskogo / Pod red. A.I. Ledovskogo. Moskva: Gorjachaja linija-Telekom. 2006. 536 s.
  7. Gromakov JU.A. Koncepcija razvitija mobilnojj besprovodnojj svjazi obshhego polzovanija // EHlektrosvjaz. 2008. № 12. S. 51−57.
  8. Suchilin V.I., Vasilev V.P. Povyshenie tochnosti mestoopredelenija mobilnogo obekta radiosvjazi putem obrabotki dannykh sputnikovojj radionavigacionnojj sistemy // Teorija i tekhnika radiosvjazi. 2013. № 2. S. 17−22.
  9. Ponomarev A.V., Vasilev V.P. Ispolzovanie v bespilotnom letatelnom apparate napravlennojj orientiruemojj antennojj sistemy // Trudy Vseros. konf. IV Voronezhskogo foruma infokommunikacionnykh i cifrovykh tekhnologijj «Perspektivnye issledovanija i razrabotki v oblasti informacionnykh tekhnologijj i svjazi». Voronezh. 2014. S. 31.
  10. Lukjanov D.P., Mochalov A.V. Inercialnye navigacionnye sistemy morskikh obektov L.: Sudostroenie. 1989. 184 s.
  11. Suchilin V.I., Volobuev G.B. Avtonomnaja navigacija nazemnogo podvizhnogo obekta putem Kalmanovskojj filtracii dvumernykh koordinat po izmerenijam proekcijj skorosti // Sb. dokladov XII Mezhdunar. nauchno-tekhnich. konf. «Radiolokacija, navigacija i svjaz». Voronezh. 2006. T. 3. S. 2330−2338.
  12. GLONASS. Principy postroenija i funkcionirovanija / Pod red. A.I. Perova, V.N. KHarisova. Izd. 3‑e, pererab. M.: Radiotekhnika. 2005. 688 s.
  13. Timokhin A.A. Ocenka tochnosti opredelenija koordinat v ehlementakh sputnikovykh navigacionnykh sistem // Teorija i tekhnika radiosvjazi. 2003. № 1. S. 67−76.
  14. Suchilin V.I., Volobuev G.B. Sravnitelnyjj analiz ehffektivnosti dvukh algoritmov avtonomnogo navigacionnogo vychislenija dvumernykh koordinat nazemnogo podvizhnogo obekta po dannym o proekcijakh ego skorosti // Teorija i tekhnika radiosvjazi. 2006. № 2. S. 63−70.