350 rub
Journal Science Intensive Technologies №2 for 2015 г.
Article in number:
Synthesis of control system for flying robot by the method of variational analytic programming
Authors:
A.I. Diveev - Dr. Sc. (Eng.), Professor, Head of Department, Dorodnicyn Computing Centre of RAS (Moscow). E-mail: aidiveev@mail.ru
N.B. Konyrbaev - Post-graduate Student, Peoples - Friendship University of Russia. E-mail: n.konyrbaev@mail.ru
Abstract:
In this paper an application of the method of variational analytic programming to the solution of the synthesis problem of a control system for the flying robot is considered. It is necessary to find the control in the form of function from an object state. The received synthesizing function has to provide calculation of control for the movement of the flying robot on the spatial trajectory set in the form of points. As an assessment of criterion for control a total mistake on a deviation from the set point and time of the movement on a trajectory is used. For the solution of the synthesis problem the method of variational analytic programming is used. The method includes two approaches: a new method of symbolical regression, the analytical programming and the principle of small variations of the basic solution for evolutionary search of the optimal possible solution.
Pages: 47-52
References
- Zelinka I. Analytic programming by Means of Soma Algorithm // Proc. of 8th International Conference on Soft Computing Mendel-02, Brno, Czech Republic. 2002. P. 93−101.
- Zelinka I., Oplatkova Z. Analytic programming // The 2nd International Conference on Computational Intelligence, Robotics, and Autonomous Systems ( CIRAS-03). Singapore. 2003. Comparative Study.
- Zelinka I., Nolle L., Oplatkova Z. Analytic Programming - Symbiloc Regression by Means of Arbitrary Evolutionary Algorithms // Journal of Simulation. 2012. V. 6. № 9. P. 44−56.
- Koza J.R., Keane M.A., Rice J.P. Performance improvement of machine learning via automatic discovery of facilitating functions as applied to a problem of symbolic system identification // IEEE International Conference on Neural Networks I. San Francisco, USA. 1993. P. 191−198.
- Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, Massachusetts, London. MA: MIT Press. 1992. 819 p.
- Bourmistrova A., Khantsis S. Control System Design Optimisation via Genetic Programming // Proc. of IEEE Congress on Evolutionary Computation. Singapore. 2007. P. 1993−2000.
- Atiensija Viljagomes KH.M., Diveev A.I. Metod setevogo operatora dlja sinteza intellektualnojj sistemy upravlenija dinamicheskim obektom // EHlektronnyjj zhurnal «Cloud of Science». 2014. T. 1. № 2(1). S. 191−198.
- Atiensija Viljagomes KH.M., Diveev A.I. CHislennyjj metod sinteza logiko-funkcionalnogo upravlenija dinamicheskim obektom // Sovremennye problemy nauki i obrazovanija. 2012. № 3. URL: www.science-education.ru/103-6530.
- Atiencia Vilagomes J.M., Diveev A.I., Sofronova E.A. The Network Operator Method for Synthesis of Intelligent Control System // Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA) 18−20 July 2012. Singapore. P. 169−174.
- Diveev A.I., Konyrbaev N.B. Vychislitelnyjj metod variacionnogo analiticheskogo programmirovanija dlja sinteza sistemy upravlenija // Sovremennye problemy nauki i obrazovanija. 2014. № 2. URL: http://www.science-education.ru/116-12401.
- Zotov JU.K., Timofeev A.V., SHishkin D.S. Informacionnye tekhnologii navigacii i upravlenija poletom malorazmernykh letatelnykh robotov korabelnogo bazirovanija // Informacionno-izmeritelnye i upravljajushhie sistemy. 2008. №8.