350 rub
Journal Science Intensive Technologies №11 for 2015 г.
Article in number:
Statistical principles diagnosis condition of the transplanted bone tissue
Authors:
A.P. Samoylenko - Associate Professor, Radio Engineering Systems and Management Institute of SFU (Taganrog), Honored Inventor of RF A.G. Volkov - Dr. Sc. (Med.), Professor, Head of Department of diseases of ear, throat and nose, Rostov Government Medicine University, Honored Doctor of RF. E-mail: vag@aaanet.ru A.V. Pribylsky - Post-graduate Student, Radio Engineering Systems and Management Institute of SFU (Taganrog). E-mail: Pribylsku.al@mail.ru
Abstract:
Surgical process of restoring the integrity of the injured bone is accomplished by the use of demineralized bone grafts (DBG) and is accompanied by a periodic diagnosis of the state of repair processes. The duration of the reparative process of bone tissue, based on the statistical history of the patient, commensurate time range from 9 months to 4 years. The patient is offered during this period at least three times to carry out X-ray examination of the transplanted area to assess the status of the evolution of the transplanted bone formation of bone tissue. The diffusion process of the graft and the bone, the limited resolution capabilities of X-ray tomography means lead to «blur» the image to the difficulty in assessing its descriptiveness clinician. The very same informative obtain biomedical image is evaluated using subjective (visual) characteristics of the image structure of medical and biological research facility and is based on the considerable experience of the researcher. This method, as previously mentioned, has a number of disadvantages associated, except for the need to have professional experience, with psycho physiological state investigator, it features the visual analyzer, the conditions for obtaining and viewing images, etc. Previous authors had a task to develop an information model of diagnosing the state of the reparative process of the patient, allowing to estimate the information content on the basis of a single image, and on a comparative analysis of images made in different time periods of its evolution. This paper proposes a number of mathematical models, based on which the clinician, with high probability through their program implementation, will be able to assess the state of the reparative process transplanted bone. The results obtained by the authors: - Developed an original method of a phased and integrated diagnostic evolution of the state of the transplanted bone; - A description of the dynamics of change in the state of transplanted bone model of a random process. Formalized and quantitatively substantiated fact that digital radiographs made at the moment of monitoring the patient\'s condition can be represented as sections of repair, that is random, the process; - Asked to define a digital model of radiographs as sample values of a random variable, and the matrix of values of densitometric feature - the intensity of the brightness of the corresponding coordinates of the image pixels; - Invited to submit digital model of the histogram distribution of the probability density values densitometric feature and its performance: the arithmetic mean, standard deviation and variance coefficient of variation; - To assess the extent and rate of absorption of the graft bone mass is proposed to use the values of the autocorrelation coefficient dependence on the time of monitoring the status of the repair process. Such a quantitative relationship could reflect the assessment of the effects of the environment on the recovery process of the operated area at the time of inspection; - To quantify the contribution to the positive result of the dynamics of a reparative process different periods of its development model proposed to use multiple correlation. These models, according to the authors, it is supposed to implement software modules that will be included in a special X-ray computer software diagnostic complex.
Pages: 69-80
References

 

  1. Blinov N.N. Biomedicinskie izobrazhenija v sovremennojj medicine // Medicinskaja tekhnika. 2010. № 5(263). S. 5−9.
  2. Spiridonov I.N. Osobennosti proektirovanija sistem deshifrirovanija medicinskikh izobrazhenijj // Biomedicinskaja ehlektronika. 1999. № 4.
  3. Spiridonov I.N. Metody avtomatizirovannojj morfometrii mediko-biologicheskikh issledovanijj // Biomedicinskie tekhnologii i radioehlektronika. 2003. № 11. S. 4−13.
  4. Gonsales R., Vuds R., EHding S. Cifrovaja obrabotka izobrazhenijj v sisteme Matlab. M.: Tekhnosfera. 2006.
  5. Rozhkova N.I., Kochetova G.P. Dinamika tekhnicheskojj osnashhennosti diagnosticheskojj sluzhby Rossijjskojj Federacii za 2002−2010 gg. // Medicinskaja tekhnika. 2012. № 2(272). S. 1−5.
  6. Blinov N.N., Mazurov A.I. Problemy rasshirenija diagnosticheskikh vozmozhnostejj medicinskojj rentgenotekhniki // Medicinskaja tekhnika. 2011. № 5(269). S. 1−5.
  7. Blinov N.N., Mazurov A.I. CHto vperedi // Medicinskaja tekhnika. 2006. № 5. S. 3−6.
  8. Simonov E.N. Klassifikacija tomograficheskikh metodov issledovanijj // Medicinskaja tekhnika. 2004. № 4. S. 8−12.
  9. Malov A.M., SHeremeteva T.A., Filippov G.N., Filippov V.G. Kompjuternaja obrabotka biomedicinskikh mnogokanalnykh izobrazhenijj s ispolzovaniem mery skhodstva s ehtalonom // Izvestija VUZov. Priborostroenie. 2009. T. 52. № 8. S. 74−79.
  10. Potrakhov N.N., Grjaznov A.JU. Metod ocenki informativnosti vizualizirovannykh dentalnykh rentgenovskikh izobrazhenijj // Medicinskaja tekhnika. 2009. № 1(253). S. 16−18.
  11. Serdobincev E.V. Kratnkijj analiz programmnogo obespechenija konusno-luchevykh kompjuternykh tomografov, primenjaemykh v Rossii // X-RAY. 2013. № 3. S. 43−48.
  12. Potokovaja obrabotka i vizualizacija kadrov serii rentgenovskikh izobrazhenijj // [EHlektronnyjj resurs] www.course-as.ru. Ssylka aktualna na 10.03.2015.
  13. Bodzhokov A.R. Plastika kostnykh defektov stenok okolonosovykh pazukh demineralizovannymi kostnymi transplantatami(kliniko-ehksperimentalnoe issledovanie). Avtoreferat diss - dokt. med. nauk. SPb. 2011. 42 s.
  14. Volkov A.G. Snizhenie znachimosti vedushhikh klinicheskikh priznakov frontita v regione Severnogo Kavkaza // Rossijjskaja rinologija. 2014. № 2. S. 13−14.
  15. Dobrotin V.E. Opredelenie pokazanijj i obema khirurgicheskogo vmeshatelstva pri distruktivnykh porazhenijakh nosa, okolonosovykh pazukh i ukha s uchetom dannykh kompjuternojj tomografii. Avtoreferat diss. - dokt. med. nauk. M. 1997. 43 s.
  16. Dobrotin V.E., Tjutina E.V. Raskhozhdenie dannykh kompjuternojj i magnito-rezonansnojj tomografii pri diagnostike zabolevanijj okolonosovykh pazukh // Trudy Vseros. nauch. konf. «Problemy reabilitacii v otorinolaringologii». 2003. 240 s.
  17. Palchun V.T. Nacionalnoe rukovodstvo boleznejj ukha, gorla, nosa. M.: GEHOTAR-Media. 2008. 919 s.
  18. Bessmertnyjj B.S. Matematicheskaja statistika v kliicheskojj, profilakticheskojj i ehksperimentalnojj medicine. M.: Medicina. 1967. 304 s.
  19. Bolshov N.L., Smirnov N.V. Tablicy matematicheskojj statistiki. M.: Nauka. 1983. 416 s.
  20. Ventcel E.S. Teorija verojatnostejj i matematicheskaja statistika. M.: Nauka. 2006. 348 s.
  21. Kobzar A.I. Matematicheskaja statistika. M.: Press. 2006. 812 s.