350 rub
Journal Science Intensive Technologies №11 for 2015 г.
Article in number:
Variational formulation and computational algorithm for solving of the problem on wear of the elastic half-plane with the non-uniform coating of the winkler type
Keywords:
wear contact problem
coating
variational inequality
integrated fundamental solutions
boundary element method
Authors:
A.A. Bobylov - Ph. D. (Phys.-Math.), Associate Professor. E-mail: abobylov@gmail.com
I.S. Belashova - Dr. Sc. (Eng.), Professor, MADI. E-mail: irina455@inbox.ru
Abstract:
A plane contact problem of wear of a thin non-uniform coating of an elastic half-plane by a rigid wear-free punch is considered. The coating is modelled by an elastic layer of the Winkler type. The variational formulation of the problem in the form of a system of an evolutionary variational inequality and an ordinary differential equation of the first order is obtained. The explicit differential scheme of Euler is used for discretization of the problem of time. Boundary element approach is applied at discretization of the problems in spatial coordinates. As a result, it is necessary to solve a square programming problem with restrictions in the form of equalities and inequalities on each temporary layer. The linear transformation of variables allowing to simplify a type of restrictions is offered. A modification of the conjugate gradients method considering specifics of restrictions is used for numerical solution of the problems. The carried out calculations showed that the heterogeneous coating significantly influences the nature of the interface wear process.
Pages: 8-20
References
- CHichinadze A.V. Trenie, iznos i smazka (tribologija i tribotekhnika). M.: Mashinostroenie. 2003. 576 s.
- Osnovy tribologii (trenie, iznos, smazka) / Pod red. A.V. CHichinadze. M.: Mashinostroenie. 2001. 664 s.
- Garkunov D.N. Tribotekhnika (iznos i bezyznosnost). M.: Izd-vo MSKHA. 2001. 616 s.
- Sovremennaja tribologija: Itogo i perspektivy / Otv. red. K.F. Frolov. M.: Izd-vo LKI. 2008. 480 s.
- Myshkin N.K., Petrokovec M.I. Trenie, iznos i smazka. Fizicheskie osnovy i tekhnicheskie prilozhenija tribologii. M.: FIZMATLIT. 2007. 368 s.
- Galin L.A. Kontaktnye zadachi teorii uprugosti i vjazkouprugosti. M.: Nauka. 1980. 303 s.
- Gorjacheva I.G., Dobychin M.N. Kontaktnye zadachi v tribologii. M.: Mashinostroenie. 1988. 256 s.
- Gorjacheva I.G. Mekhanika frikcionnogo vzaimodejjstvija. M.: Nauka. 2001. 478 s.
- Soldatenkov I.A. Iznosokontaktnaja zadacha s prilozhenijami k inzhenernomu raschetu iznosa. M.: Fizmatkniga. 2010. 160 s.
- Gorjacheva I.G., Soldatenkov I.A. Kontaktnaja zadacha s uchetom iznosa // Mekhanika kontaktnykh vzaimodejjstvijj. M.: FIZMATLIT. 2001. S. 438−458.
- Muravev I.V. Vybor matematicheskojj modeli metoda nanesenija pokrytijj na rabochie poverkhnosti detalejj // Vestnik MGTU «Stankin» (nauchnyjj recenziruemyjj zhurnal). M.: MGTU «Stankin». 2009. № 1(5). S. 82−86.
- Ajjzikovich S.M., Aleksandrov V.M., Belokon A.V., Krenev L.I., Trubchik I.S. Kontaktnye zadachi teorii uprugosti dlja neodnorodnykh sred. M.: FIZMATLIT. 2006. 240 s.
- Aleksandrov V.M., Mkhitarjan S.M. Kontaktnye zadachi dlja tel s tonkimi pokrytijami i proslojjkami. M.: Nauka. Glavnaja redakcija fiziko-matematicheskojj literatury. 1983. 488 s.
- Kovalenko E.V. O kontakte tverdogo tela s uprugim poluprostranstvom cherez tonkoe pokrytie // Prikladnaja matematika i mekhanika. 1999. T. 63. № 1. S. 119−127.
- Kovalenko E.V. Kontaktnye zadach dlja tel s pokrytijami // Mekhanika kontaktnykh vzaimodejjstvijj. M.: FIZMATLIT. 2001. S. 459−475.
- SHtaerman I.JA. Kontaktnaja zadacha teorii uprugosti. M.-L.: Gostekhizdat. 1949. 270 s.
- Djuvo G., Lions ZH.-L. Neravenstva v mekhanike i fizike. M.: Nauka. 1980. 383 s.
- Kalker J.J. Variational principles of contact elastostatics // Journal of the Institute of Mathematics and its Applications. 1977. V. 20(2). P. 199−219.
- Kravchuk A.S. Variacionnye i kvazivariacionnye neravenstva v mekhanike. M.: MGAPI. 1997. 340 s.
- Panagiotopulos P. Neravenstva v mekhanike i ikh prilozhenija. Vypuklye i nevypuklye funkcionaly ehnergii. M.: Mir. 1989. 496 s.
- Bobyljov A.A. Variacionnyjj metod reshenija kontaktnykh zadach dlja tel konechnykh razmerov pri nalichii iznosa // Sovremennye problemy mekhaniki kontaktnykh vzaimodejjstvijj. Dnepropetrovsk: DGU. 1990. S. 49−52.
- Temam R. Matematicheskie zadachi teorii plastichnosti. M.: Nauka. 1991. 288 s.
- Aleksidze M.A. Fundamentalnye funkcii v priblizhennykh reshenijakh granichnykh zadach. M.: Nauka. Gl. red. fiz.-mat. lit. 1991. 352 s.
- Ugodchikov A.G., KHutorjanskijj N.M. Metod granichnykh ehlementov v mekhanike deformiruemogo tverdogo tela. Kazan: Izd-vo Kazanskogo un-ta. 1986. 295 s.
- Sjarle F. Metod konechnykh ehlementov dlja ehllipticheskikh zadach. M.: Mir. 1980. 512 s.
- Bobylev A.A. Ob odnom variante chislennogo reshenija kontaktnykh zadach teorii uprugosti // Sb. nauch. tr. «Reshenie prikladnykh zadach matematicheskojj fiziki i diskretnojj matematiki». Dnepropetrovsk: DGU. 1987. 23−29 s.