350 rub
Journal Science Intensive Technologies №10 for 2015 г.
Article in number:
Synthesis of control for pendulum system with switching on the basis of use of modified linear matrix inequalities
Authors:
O.V. Druzhinina - Dr.Sc. (Phys.-Math.), Professor, Chief Researcher, Federal Research Center «Informatics and Management» of the Russian Academy of Sciences. E-mail: ovdruzh@mail.ru O.N. Masina - Dr.Sc. (Phys.-Math.), Professor, Department of Mathematical Modeling and Computer Technologies, Yelets State University named after I.A. Bunin. E-mail: olga121@inbox.ru E.V. Igonina - Assistant, Department of Applied Mathematics and Informatics, Yelets State University named after I.A. Bunin. E-mail: elenaigonina7@mail.ru
Abstract:
An approach to the synthesis of control of dynamic system with switching based on presentation of the original system by the Takagi-Sugeno model (TS-model) is proposed. To construct a logic controller, the procedure of dynamic parallel distributed compensation (DPRK) is used. The conditions of stability in the form of modified linear matrix inequalities are obtained. On example of the inverted pendulum control system, the synthesis of the control of inverted pendulum with switching is carried out and computational experiment is made. Parameters of the logical DPRK-regulator stabilizing the inverted pendulum are found. The approach considered in the work is directed on effective control of dynamic objects and processes at constantly changing external influences and existence of parametrical uncertainty of object. The obtained results can be used at design and improvement of the controlled technical systems.
Pages: 3-13
References

 

  1. Masina O.N., Druzhinina O.V. Modelirovanie i analiz ustojjchivosti nekotorykh klassov sistem upravlenija. M.: VC RAN. 2011.
  2. Druzhinina O.V., Kaledina E.A. SHHennikov V.N., SHHennikova E.V. Stabilizacija mnogosvjaznojj upravljaemojj manipuljacion­nojj sistemy s ispolzovaniem kusochno-postojannogo upravlenija// Sistemy upravlenija i informacionnye tekhnologii. 2014. №4(58). S.55-59.
  3. Tochilin P.A., Kurzhanskijj A.B. K zadache sinteza upravlenijj pri neopredelennosti po dannym finitnykh zakljuchenijj // Differencialnye uravnenija. 2011. T. 47. №11. S.1599-1607.
  4. Dyda A.A., Markin V.E. Sistemy upravlenija s peremennojj strukturojj s parnymi i nelinejjno deformiruemymi poverkhnostjami perekljuchenija // Problemy upravlenija. 2005. № 1. S. 22-25.
  5. Aleksandrov A.JU., Platonov A.V. Ob ustojjchivosti gibridnykh odnorodnykh sistem // Vestnik Samarskogo. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki. 2010. №5(21). S. 24-32.
  6. Vasilev S.N., Kosov A.A. Analiz dinamiki gibridnykh sistem s pomoshhju obshhikh funkcijj Ljapunova i mnozhestvennykh gomomorfizmov // Avtomatika i telemekhanika. 2011. Vyp.6. S.27-47.
  7. Ananevskijj I.M. Sintez upravlenija dinamicheskimi sistemami na osnove metoda funkcijj Ljapunova// Trudy Mezhdunar. konf. po matematicheskojj teorii upravlenija i mekhanike. M.: RUDN. 2011. S. 23-29.
  8. Lizina E.A. SHHennikov V.N.Dvukhurovnevaja stabilizacija mnogosvjaznojj gibridnojj dinamicheskojj sistemy s neperekryvaju­shhimisja dekompozicijami // Sistemy upravlenija i informacionnye tekhnologii. 2011. №2(44). S. 30-34.
  9. Ye Hui, Mitchel A.N., Hou Ling. Stability theory for hybrid dynamical system// IEEE Transactions automatic control. 1998. V.43. №4. P. 461-474.
  10. Druzhinina O.V., Masina O.N, Igonina E.V. Razrabotka algoritmov stabilizacii upravljaemykh sistem na osnove svojjstv linejjnykh matrichnykh neravenstv // Naukoemkie tekhnologii. 2013. T. 14. № 6. S. 4-8.
  11. Druzhinina O.V., Igonina E.V., Masina O.N. Modelirovanie i stabilizacija dinamicheskikh sistem s logicheskimi reguljatorami // Soobshhenija po prikladnojj matematike. M.: VC RAN. 2015.
  12. Tanaka K., Wang H.O. Fuzzy control systems design and analysis: a linear matrix inequality approach. N.Y.: Wiley. 2001.
  13. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Trans. Syst., Manand Cyber. 1985. V. 15. P. 116-132.
  14. Kosko B.Fuzzy systems as universal approximators// IEEE Transactions on Computers. 1994. V. 43. №11. P. 1329-1333.
  15. Balandin D.V., Kogan M.M. Primenenie linejjnykh matrichnykh neravenstv v sinteze zakonov upravlenija. N. Novgorod. 2010.
  16. Druzhinina O.V., Masina O.N., Igonina E.V. Modelirovanie i postroenie algoritma stabilizacii perevernutogo majatnika// Dinamika slozhnykh sistem. 2012. T.6. №4. S.75-79.
  17. Abdelmalek I., Golea N., Hadjili M. A new fuzzy Lyapunov approach to non-quadratic stabilization of Takagi-Sugeno fuzzy models// Int. J. Appl. Math. Comput. Sci. 2007. V. 17. №1. P.39-51.
  18. Masina O.N., Igonina E.V. Issledovanie ustojjchivosti reshenijj differencialnykh uravnenijj, opisyvajushhikh dvizhenie perevernutogo majatnika, s pomoshhju funkcijj Ljapunova i logicheskogo reguljatora // Vestnik RAEN. Differencialnye uravnenija. 2013. T.13. №4. S. 58-62.
  19. Leonenkov A.V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH. SPb.: BKHV-Peterburg. 2005.
  20. Lawson D.J.Generalized Runge-Kutta processes for stable systems with large Lipshitz constants // SIAM J. Numer. Anal. 1967. V. 4. №3. P. 372-380.
  21. Igonina E.V. Issledovanie ustojjchivosti i kompjuternoe modelirovanie majatnikovojj sistemy upravlenija// Materialy  I shkoly-seminara molodykh uchenykh «Fundamentalnye problemy sistemnojj bezopasnosti» (g. Elec, 20-22 nojabrja 2014). Elec: EGU im. I.A. Bunina. 2014. S. 93-99.