350 rub
Journal Science Intensive Technologies №8 for 2014 г.
Article in number:
Qualitative analysis and estimation of linearization error for multiply connected dynamical systems
Authors:
O.V. Druzhinina - Dr.Sc. (Phys.-Math.), Professor, Dorodnicyn Computing Centre of RAS. E-mail: ovdruzh@mail.ru
E.V. Shchennikova - Dr.Sc. (Phys.-Math.), Professor, Naional Research Mordovian State University name after N.L. Ogarev. E-mail: schennikova8000@yandex.ru
Abstract:
Multiply connected dynamical systems described by nonlinear finite-dimensional differential equations are considered. Conditions of asymptotical stability with respect to one part phase variables and conditions of uniform boundedness with respect to another part phase variables are suggested. Estimation of linearization error is constructed by the aid of Lyapunov vector functions method. The obtained results can be used in problems of analysis of behavior of technical manipulators. In the present paper a constructive method of qualitative analysis of dynamical systems multiply, as well as a method of constructing estimates linearization of these systems. The results obtained are solving problems of correctness of the use of linearized systems in the theory of motion stability of nonlinear systems.
Pages: 32-37
References

  1. Zubov V.I. Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya. L.: Mashinostroenie. Leningrad. otd. 1974. 336 s.
  2. Aleksandrov A.Yu., Platonov A.V. Metod sravneniya i ustoychivost' dvizheniy nelineynykh sistem. SPb.: Izd-vo S.-Peterb. un-ta. 2012. 263 s.
  3. Druzhinina O.V., Shchennikov V.N., Shchennikova Ye.V. Postroenie otsenki maksimal'nogo otkloneniya resheniy nelineynoy mnogosvyaznoy sistemy i sootvetstvuyushchey sistemy pervogo priblizheniya // Trudy X Mezhdunar. Chetaevskoy konf. T. 1. Sektsiya 1. Analiticheskaya mekhanika. Kazan'. 12-16 iyunya 2012 g. Kazan': Izd-vo Kazan. gos. tekhn. un-ta. 2012. S. 143-153.
  4. Shchennikova Ye.V. Ustoychivopodobnye svoystva resheniy odnoy mnogosvyaznoy sistemy differentsial'nykh uravneniy // Matemat. zametki. 2012. T. 91. Vyp. 1. S. 136-142.
  5. Druzhinina O.V., Shchennikov V.N., Shchennikova Ye.V. Usloviya i algoritmy optimal'noy stabilizatsii otnositel'no chasti peremennykh mnogosvyaznykh nelineynykh upravlyaemykh sistem // Dinamika slozhnykh sistem. 2012. T. 6. № 3. S. 154-158.
  6. Vukobratovich M., Stokich D. Upravlenie manipulyatsionnymi robotami. M.: Nauka. 1985.
  7. Druzhinina O.V., Shchennikov V.N., Shchennikova Ye.V. Algoritmy optimal'noy stabilizatsii programmnogo dvizheniya manipulyatsionnoy dinamicheskoy sistemy // Nelineynyy mir. 2012. T. 10. № 12. S. 932-937.
  8. Druzhinina O.V., Masina O.N., Shchennikova Ye.V. Optimal'naya stabilizatsiya prog­rammnogo dvizheniya manipulyatsionnykh dinamicheskikh sistem // Dinamika slozhnykh sistem. 2011. T. 5. № 3. S. 58-64.
  9. Rosier L. Homogeneous Lyapunov fuction for homogeneous continuous vector field // Syst. Contz. Lett. 1992. V. 19. № 6. P. 467-473.
  10. Martynyuk A.A., Obolenskiy A.Yu. Ob ustoychivosti avtonomnykh sistem Vazhevskogo // Differentsial'nye uravneniya. 1980. T. 16. № 8. S. 1392-1407.
  11. Masina O.N., Druzhinina O.V. Modelirovanie i analiz ustoychivosti nekotorykh klassov sistem upravleniya. M.: VTs  RAN. 2011.
  12. Druzhinina O.V. Ustoychivost' i stabilizatsiya po Zhukovskomu dinamicheskikh sistem: Teoriya, metody i prilozheniya. M.: URSS. 2013.