350 rub
Journal Science Intensive Technologies №12 for 2014 г.
Article in number:
Method of diagnostics of the enterprise on the basis of artificial neural network
Authors:
O.G. Pavlov - Dr. Sc. (Med.), Deputy Director Medical Institute of Tula State University. E-mail: dr_o_pavlov@mail.ru Y.A. Halin - Ph. D. (Eng.), Senior Lecturer, Southwest State University (Kursk). E-mail: yur-khalin@yandex.ru L.A. Lisitsin - Ph. D. (Eng.), Associate Professor, Southwest State University (Kursk). E-mail: leo_263@mail.ru
Abstract:
Currently, artificial neural networks are one of the fastest growing sectors of information technology. Neural network techniques are of practical use in solving a wide range of scientific and engineering problems. One such task is the diagnosis of conditions of industrial enterprises. In world practice there are a large number of models and methods of diagnostics of the state enterprises, which are mainly based on the methods of discriminant analysis. But they all have a significant limitation for practical use as weights in them is strictly fixed. To address this limitation is available using artificial neural networks.
Pages: 70-72
References

 

  1. Antikrizisnoe upravlenie. Uchebnik / Pod red. EH.M. Korotkova. M.: Infra-M. 2002. 432 s.
  2. Ovchinkin O.V., Ovchinkina T.V., Pavlov O.G. Personalnoe modelirovanie zabolevanijj serdechno-sosudistojj sistemy s primeneniem nejjronnykh setejj i instrumentalnykh sredstv // Vestnik novykh medicinskikh tekhnologijj. 2011. T. 18. № 4. S. 41−43.
  3. Pavlov O.G., KHalin JU.A. Osnovy nejjrokibernetiki, geneticheskie algoritmy. Ucheb. posobie. Tula: izd-vo TulGU. 2014. 103 s.
  4. Rutkovskaja D., Pilinskijj M., Rutkovskijj L. Nejjronnye seti, geneticheskie algoritmy i nechetkie sistemy. M: Gorjachaja Linija-Telekom. 2006. 452 s.
  5. Tu Dzh., Gonsales R. Principy raspoznavanija obrazov. Ucheb. posobie. M.: Mir. 1978. 411 s.
  6. JUn G.B. Metodologija antikrizisnoe upravlenija. Ucheb. posobie. M.: Delo. 2004. 432 s.