350 rub
Journal Science Intensive Technologies №12 for 2014 г.
Article in number:
Application group method of data handling for patients with genital herpes
Keywords:
group method of data handling
fuzzy logic of decision-making
classification of clinical options of a course of genital herpes
system interrelations of characteristics of a condition of an organism
Authors:
M.I. Lukashov - Ph. D. (Med.), Dr. Sc. Candidate, Southwest State University (Kursk)
A.G. Ustinov - Dr. Sc. (Med.), Professor, Pirogov Russian National Research Medical University (Moskow). E-mail: algeus@mail.ru
M.V. Artemenko - Ph. D. (Biol.), Associate Professor, Southwest State University (Kursk). E-mail: artem1962@mail.ru
E.V. Pismennay - Ph. D. (Med.), Kursk Regional Clinical Dermatovenerologic Dispensary
Abstract:
One of the most common human viral infections is genital herpes, treatment quality is largely determined by the timeliness and accuracy of diagnosis of the disease variants. From the point of view of pattern recognition theory, this problem belongs to the class of poorly formalized, since no sufficiently clear boundaries between classes of states to be diagnosed. To solve this problem, we propose to use fuzzy logic decision-making and self-organization modeling based on the concepts of group method of data handling. The use of this approach allowed for the study of systemic linkages feature space with the construction of fuzzy decision rules for such class of states as: patients who have herpes clinically undetectable; patients with trace detection of herpes; patients with herpes detected; patients with clinically observable herpes. Checking the quality of the classification decision rules obtained on a representative control sample showed that the diagnostic efficiency of better than 0,9. The obtained results allow to improve the quality and optimize the diagnostic and treatment process of patients with genital herpes.
Pages: 51-58
References
- Samakha A.B., SHevjakin V.N., Razumova K.V., Korenevskaja S.N. Ispolzovanie interaktivnykh metodov klassifikacii dlja reshenija zadach medicinskogo prognozirovanija // Fundamentalnye issledovanija. 2014. № 1. S. 33−37.
- Ivakhnenko A.G., JUrachkovskijj JU.P. Modelirovanie slozhnykh sistem po ehksperimentalnym dannym. M.: Radio i svjaz. 1987. 118 s.
- Korenevskijj N.A., Ruckojj R.V., Dolzhenkov S.D. Metod prognozirovanija i diagnostiki sostojanija zdorovja na osnove kollektivov nechetkikh reshajushhikh pravil // Sistemnyjj analiz i upravlenie v biomedicinskikh sistemakh. 2013. T. 12. № 4. S. 905−909.
- Korenevskijj N.A., Krupchatnikov R.A., Gorbatenko S.A. Sintez nechetkikh setevykh modelejj obuchaemykh po strukture dannykh dlja medicinskikh ehkspertnykh sistem // Medicinskaja tekhnika. 2008. № 2. S. 18−24.
- Korenevskijj N.A., Degtjarev S.V., Seregin S.P., Novikov A.V. Interaktivnyjj metod klassifikacii v zadachakh medicinskojj diagnostiki // Medicinskaja tekhnika. 2013. № 4. S. 1−3.
- Korenevskijj N.A. Metod sinteza geterogennykh nechetkikh pravil dlja analiza i upravlenija sostojaniem biotekhnicheskikh sistem // Izvestija JUgo-Zapadnogo gosudarstvennogo universiteta. Serija: Upravlenie, vychislitelnaja tekhnika, informatika. Medicinskoe priborostroenie. 2013. № 2. S. 99−103.
- Korenevskijj N.A., Krupchatnikov R.A., Al-Kasasbekh R.T. Teoreticheskie osnovy biofiziki akupunktury s prilozhenijami v medicine, psikhologii i ehkologii na osnove nechetkikh setevykh modelejj. Staryjj Oskol: TNT. 2013. 528 s.
- Korenevskijj N.A., Lukashov M.I., Serebrovskijj V.I., Degtjarev S.V., Maslak A.A. Ispolzovanie informacionnykh tekhnologijj dlja prognozirovanija i diagnostiki infekcionnykh zabolevanijj (na primere genitalnogo gerpesa). Kursk: Izdatelstvo Kurskojj gosudarstvennojj selskokhozjajjstvennojj akademii. 2011. 123 s.
- Titov V.S., Ustinov A.G., Kljuchikov I.A., SHevjakin V.N. Ocenka sostojanija zdorovja cheloveka s pomoshhju nechetkikh geterogennykh pravil // Izvestija JUgo-Zapadnogo gosudarstvennogo universiteta. 2012. № 1. CH. 1. S. 41−55.
- Korenevskij N.A., Gorbatenko S.A., Krupchatnikov R.A.,Lukashov M.I. Design of network-based fuzzy knowledge bases for medical decision-making support systems // Biomedical Engineering. 2009. № 4(43). P. 187−190.
- Shortliffe E.H. Computer-based medical consultations. MYSIN, New York: American Elseviver. 1976.
- Ustinov A, Boitsov A., Korenevskaja S., Khripina E. Intelligent medical systems with groups of fuzzy decision rules // 10th Russian-German conference on biomedical engineering, June 25−27, 2014. Saint Petersburg: Saint Petersburg State Electrotechnical University. 2014. P. 90−92.
- Zadeh L.A. Advances in Fuzzy Mathematics and Engineering: Fuzzy Sets and Fuzzy Information-Granulation Theory // Biomedical Engineering. Normal University Press. 2005.