350 rub
Journal Science Intensive Technologies №4 for 2011 г.
Article in number:
DESIGNING OF CONTROLLERS OF FUZZY-NEURAL CONTROL BY TECHNICAL SYSTEMS ON THE BASIS OF THE QUANTITATIVE DATA
Authors:
O.N. Masina
Abstract:
The article is devoted to development of methods of designing of the controllers which are carrying out development of controlling influences on the basis of the quantitative data, obtained with measuring gages. The method of neural networks which is not demanding full knowledge of object of control is applied to processing of this data. The first step by working out of fuzzy rules is division of space of signals into areas in which there are admissible values of signals. The following step consists in creation of fuzzy rules on the basis of the training data and definition of membership degrees. The third step consists in attributing to each rule of truth degree and the subsequent choice of a rule with the greatest truth degree. Further there is a creation of base of fuzzy rules. Last step by working out of fuzzy rules is procedure defuzzification in which result the output value of fuzzy system will be transformed to crisp number. In article the algorithm of construction of base of rules on the basis of the quantitative data, corresponding to the steps described above is presented. The obtained results can be used for improvement of technological processes and technical systems of fuzzy control.
Pages: 16-20
References
  1. Круглов В.В., Дли М.Н., Голунов Р.Ю. Нечеткая логика и искусственные нейронные сети. ФМ М.: Физматлит. 2001.
  2. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. М.: Горячая линия-Телеком. 2008.
  3. Аверкин А.Н., Батыршин И.З., Блишун А.Ф., Силов В.Б., Тарасов В.Б. Нечеткие множества в моделях управления и искусственного интеллекта. М.: Наука. 1986.
  4. Tanaka K., Sugeno M. Stability analysis and design of fuzzy control systems // Fuzzy Sets and Systems. 1992. V. 45. № 2. P. 135-156.
  5. Дружинина О.В., Масина О.Н. Методы исследования устойчивости и управляемости нечетких и стохастических динамических систем. М.: Вычис­лительный центр им. А.А. ДородницынаРАН. 2009.