350 rub
Journal Science Intensive Technologies №5 for 2009 г.
Article in number:
ULTRASOUND IN TECHNOLOGIES OF RECEPTION OF MULTILAYERED MATERIALS AND NANOSTRUCTURES
Authors:
N.V. Jarantsev, G.A. Chistjakov, A.P. Korzhavyi, V.P. Marin, D.K. Nikiforov
Abstract:
Features of reception of substrates of cold cathodes from multilayered materials are resulted. It is shown, that the ultrasound can promote maintenance of properties to the materials subjected to a deep extract (to reception of details as thin-walled cylinders). Practical application of multilayered substrates is described as emitting nanostructures. Questions of reception and examination of physicotechnical parameters of thin-film cold cathodes surveyed on the basis of structures Al-Al2O3. Metallographic, X-rays and electron-spectral examinations were carried out in rechearch institute «New technologies and materials «ATOM». The degree of deficiency of metal coats was checked by a method electron fluctuation diagnostics (his improvement is lead on chrome thin films), oxide-coated films  the adsorption analysis and electrophysical measurings. For optimization of thin-film cylindrical cold cathodes experiments on studying physicotechnical parameters of structures metal - oxide films of metal on section breadboard models of discharge tubes from a glass (by length ~ 100 mm, a caliber ~ 30 mm), the filled He-Ne an intermixture have been lead. At making breadboard models for the best adhesion of structures on cylindrical glass substrates sputter a metal underlayer. Further superimposed a metal film (Al) thermal transpiration in a fine vacuum. A film of oxide (Al2O3) created both a thermal oxidizing, and a jet pulverization in oxygen (70-1000 Pа) at 520-670 K. Allocation of a discharge current on length of a breadboard model is explored at various shapes of a bottom of the cathode
Pages: 60-64
References
  1. Коржавьй А.П., Марин В.П., Сигов А.С. // Наукоемкие технологии. 2002. Т. 3. №4. С. 20-31.
  2. Семенова В.Б., Коржавый А.П. Обзоры по электронной технике. Сер. Лазерная техника и оптоэлектроника. 1982. Вып. 3(900). С. 72.
  3. Киселев А.Б. Металлооксидные катоды электронных приборов. М: МФТИ. 2002. С. 240.
  4. Гуртов В.А. Электронные процессы в структурах металл-диэлектрик-полупроводник. Петрозаводск: ПГУ. 1984. С. 68.
  5. Никифоров К.Г., Коржавый А.П., Горбачев В.В. и др. Дефекты и физические свойства многокомпонентных электронных материалов. Калуга: КГПУ. 1999. С. 49-91.
  6. Крапухин В.В., Соколов И.А., Кузнецов Г.Д. Физико-химические основы технологии полупроводниковых материалов. М.: Металлургия. 1995. С. 495.
  7. Никифоров Д.К., Коржавый А.П.// Электронный журнал «Исследовано в России». 2006. Т. 9. С. 875-888. http://zhumal.аре.relarn.ru/articles/2006/092,рdf
  8. Никифоров Д.К., Коржавьй А.П. Вестник Калужского университета. 2006. №2. С. 9-16.
  9. Никифоров Д.К., Коржавый А.П., Марин В.П., ЧистяковГ.А. // Наукоемкие технологии. 2006. Т. 7. № 4-5. С. 64-66.