350 rub
Journal Radioengineering №8 for 2025 г.
Article in number:
Informative value of synthetic aperture radar for observing subsurface targets
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202508-15
UDC: 621.37
Authors:

A.V. Borisenkov1, O.V. Goryachkin2, V.P. Kubanov3, A.S. Lifanov4

1–4 Povolzhskiy State University of Telecommunications and Informatics (PGUTI) (Samara, Russia)

1 a.borisenkov@psuti.ru; 2 o.goryachkin@psuti.ru; 3 v.kubanov@psuti.ru; 4 a.lifanov@psuti.ru

Abstract:

Currently, synthetic aperture radar systems (SAR) are widely used in solving problems of remote sensing of the Earth from space and air carriers. The information capabilities of these systems when observing subsurface targets are usually unknown, especially for quantitative assessment. To solve the problem, a method for calculating the signal-to-noise ratio on a radar image is proposed, taking into account the parameters of the radar, the geometry of the survey, the characteristics of the underlying surface and the environment in which the target is immersed.

Goal of the research is to develop a methodology for calculating indicators of the in formativeness of the RSA when observing subsurface targets.

A method for calculating the signal-to-noise+background ratio on a radar image of a subsurface target, taking into account the environmental parameters, is presented. The values of the target detection depth are obtained depending on the properties of the medium, the underlying surface, and the parameters of the radar.

The practical significance of this study lies in the fact that the proposed methodology can be used to determine the informative value of different ranges of radar when observing subsurface targets.

The peculiarity of the technique is that it can be used for both theoretical and experimental research. In addition, using the obtained ratios, we can determine the tactical and technical parameters of the radar, at which the specified information content is achieved when observing a subsurface target. An example of calculating the target detection depth in the MRLK-2 RADAR shows that the penetrating power of radio waves and the level of reflection from the surface are the main factors determining the actual information content.

Pages: 127-134
For citation

Borisenkov A.V., Goryachkin O.V., Kubanov V.P., Lifanov A.S. Informative value of synthetic aperture radar for observing subsurface targets. Radiotekhnika. 2025. V. 89. № 8. P. 127−134. DOI: https://doi.org/10.18127/j00338486-202508-15 (In Russian)

References
  1. Kirilin A.N., Ahmetov R.N., Shahmatov E.V., Tkachenko S.I., Baklanov A.I., Salmin V.V., Semkin N.D., Tkachenko I.S., Gorjachkin O.V. Opytno-tehnologicheskij malyj kosmicheskij apparat «AIST-2D». Samara: Izd-vo SamNC RAN. 2017. 324 s. (in Russian).
  2. Ramongassie S., Valle P., Orlando G. et al. P-band SAR instrument for BIOMASS// EUSAR. 2014. Р. 1156–1159.
  3. Ulander L.M.H. et al. Performance of the CARABAS-II VHF-band synthetic aperture radar. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217). Sydney. NSW. Austraia. 2001. V. 1. P. 129-131. doi: 10.1109/IGARSS.2001.976079.
  4. Baqué R. et al. Results of the LORAMbis bistatic VHF/UHF SAR experiment for FOPEN. Proceedings of 2011 IEEE CIE International Conference on Radar. Chengdu. China. 2011. P. 51-54. doi: 10.1109/CIE-Radar.2011.6159473.
  5. Lavrov G.A., Knjazev A.S. Prizemnye i podzemnye antenny. Teorija i praktika antenn, razmeshhennyh vblizi poverhnosti zemli. M.: Sovetskoe radio. 1965. 473 s. (in Russian).
  6. Sosunov B.V., Filippov V.V. Osnovy rascheta podzemnyh antenn. L.: VAS. 1990. 82 s.
  7. Verba V.S., Neronskij L.B., Osipov I.G., Turuk V.Je. Radiolokacionnye sistemy zemleobzora kosmicheskogo bazirovanija. Pod red. V.S. Verby. M.: Radiotehnika. 2010. 680 s. (in Russian).
  8. Spravochnik po radiolokacii. Pod red. M. Skolnika: per. s angl. pod red. Ja.S. Ichoki. V 4-h tomah. M. 1976. T. 1 (in Russian).
  9. King R., Smit G. Antenny v material'nyh sredah. Kn. 2. M.: Mir. 1984 (in Russian).
  10. Sedleckij R.M. Jeffektivnaja ploshhad' rassejanija ideal'no provodjashhih tel prostejshej formy v sredah s kompleksnoj pronicaemost'ju. Zhurnal radiojelektroniki. 2001. № 9. S. 4 (in Russian).
  11. Shoshin E.L. Izmerenie jeffektivnoj poverhnosti rassejanija lokal'nyh ob’ektov radiolokatorom podpoverhnostnogo zondirovanija. Zhurnal radiojelektroniki. 2022. № 11. S. 18 (in Russian).
  12. Burr R., Schartel M., Grathwohl A., Mayer W., Walter T., Waldschmidt C. UAV-Borne FMCW in SAR for Focusing Buried Objects. IEEE Geoscience and Remote Sensing Letters. 2022. V. 19. P. 1-5. doi: 10.1109/LGRS.2021.3094165.
  13. Alyshev Ju.V., Borisenkov A.V., Brajnina I.S., Gorjachkin O.V. i dr. Optimal'nye metody obrabotki signalov v sistemah radiotehniki i svjazi. Samara: Izd-vo SamNC RAN. 2018. 344 s.
  14. Kubanov V.P. Linejnye simmetrichnye jelektricheskie vibratory v svobodnom prostranstve. Samara: PGUTI. 2011. 52 s. (in Russian).
Date of receipt: 05.06.2025
Approved after review: 10.06.2025
Accepted for publication: 22.07.2025