350 rub
Journal Radioengineering №8 for 2025 г.
Article in number:
To the electrodynamic theory of a thin-wire structure
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202508-10
UDC: 621.396
Authors:

D.P. Tabakov1, A.G. Mayorov2

1,2 Povolzhskiy State University of Telecommunications and Informatics (Samara, Russia)

1 illuminator84@yandex.ru; 2 a.mayorov@psuti.ru

Abstract:

A thin-wire structure is one of the most important objects from the point of view of electrodynamics, as it serves as the basis for constructing various radiating structures, which include many types of single-element and multi-element vibrator, loop, and spiral antennas, as well as re-radiating structures such as diffraction grates, замедляющие структуры, microwave lenses, metamaterials, etc. The analysis of such structures involves solving the internal and external electrodynamics problems in a sequential manner. The article develops a unified methodology for solving the internal and external problems of electrodynamics for various thin-wire radiating and re-radiating structures based on integral representations of the electromagnetic field using the method of eigenfunctions, and it also formulates generalized conclusions based on the results obtained for a number of thin-wire structures. The concept of a projection integral representation of an electromagnetic field is introduced. It is shown that on the basis of the method of eigen functions for specific thin-wire structures, optimal projection integral representations of an electromagnetic field can be constructed, with the help of which it is possible to effectively solve the internal and external problem of electrodynamics, as well as to obtain a clear physical interpretation of the physical processes taking place in structures. The computational features of the proposed methods are considered. It is shown that from the point of view of the eigenfunction method, a thin-wire structure is an open resonator, the losses in which are due to the radiation of electromagnetic waves into the space surrounding the structure. A classification of resonance phenomena occurring in thin-wire structures is given.

Pages: 75-88
For citation

Tabakov D.P., Majorov A.G. To the electrodynamic theory of a thin-wire structure. Radiotekhnika. 2025. V. 89. № 8. P. 75−88. DOI: https://doi.org/10.18127/j00338486-202508-10 (In Russian)

References
  1. Mei K.K. On the integral equations of thin wire antennas. IEEE Trans. on Ant. and Prop. AP-13. 1965. Р. 374-378. DOI: 10.1109/TAP.1965.1138432.
  2. Pocklington H.C. Electrical oscillations in wire. Proceedings of the Cambridge Philosophical Society. 1897. № 9. Р. 324‒332.
  3. Hallen E. Theoretical investigation into the transmitting and receiving qualities of antennas. Nova Acta (Uppsala). 1938. № 11. P. 1-44.
  4. Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. M.: Nauka. 1986. 288 s. (in Russian).
  5. Kapitonov V.A., Neganov V.A., Marsakov I.Ju., Tabakov D.P. Integral'noe predstavlenie jelektromagnitnogo polja geometricheski kiral'noj struktury. Fizika volnovyh processov i radiotehnicheskie sistemy. 2012. T. 15. № 4. S. 6-13 (in Russian).
  6. Vychislitel'nye metody v jelektrodinamike. Pod red. R. Mitry. M.: Mir. 1977. 487 s. (in Russian).
  7. Tabakov D.P. Ob opisanii izluchenija i difrakcii jelektromagnitnyh voln metodom sobstvennyh funkcij. Izvestija vuzov. Ser. Radiofizika. 2021. T. 64. № 3. S. 179-191. DOI: 10.52452/00213462_2021_64_03_179 (in Russian).
  8. Harrington R.F. Field computation by moment method. Macmillan. New York. 1968. 150 p.
  9. Strizhkov V.A. Matematicheskoe modelirovanie jelektrodinamicheskih processov v slozhnyh antennyh sistemah. Matematicheskoe modelirovanie. 1989. T. 1. № 8. S. 127-138 (in Russian).
  10. Golub Dzh., Van Loun Ch. Matrichnye vychislenija: Per. s angl. M.: Mir. 1999. 548 s.
  11. Material s sajta OpenNET. URL: https://www.opennet.ru/man.shtml?topic=zgeev&category=3&russian=4 (data obrashhenija: 10.07.2025) (in Russian).
  12. Material c sajta Wikipedia. URL: https://ru.wikipedia.org/wiki/LAPACK (data obrashhenija: 10.07.2025) (in Russian).
  13. Kalaba R., Spingarn K., Tesfatsion L. Individual tracking of an eigenvalue and eigenvector of a parameterized matrix. Nonlinear Analysis: Theory, Methods and Applications. 1981. V. 5. № 4. P. 337–340.
  14. Voskresenskij D.I., Gostjuhin V.L., Maksimov V.M., Ponomarev L.I. Ustrojstva SVCh i antenny. Pod red. D.I. Voskresenskogo. Izd. 2-e, dop. i peperab. M.: Radiotehnika. 2006. 376 s. (in Russian).
  15. Tihonov A.N., Samarskij A.A. Uravnenija matematicheskoj fiziki: Ucheb. posobie. Izd. 6-e., ispr. i dop. M.: Izd-vo MGU. 1999 (in Russian).
  16. Tabakov D.P., Majorov A.G. Approksimacija reshenija vnutrennej jelektrodinamicheskoj zadachi dlja tonkogo jelektricheskogo vibratora metodom sobstvennyh znachenij. Materialy XVI MNTK «Fizika i tehnicheskie prilozhenija volnovyh processov». Miass. 2018 (in Russian).
  17. Tabakov D.P., Majorov A.G. O sobstvennyh znachenijah integral'nogo operatora singuljarnogo integral'nogo uravnenija tonkogo trubchatogo vibratora. Fizika volnovyh processov i radiotehnicheskie sistemy. 2019. T. 22. № 1. S. 26–31. DOI: 10.18469/1810-3189.2019.22.1.26-31 (in Russian).
  18. Tabakov D.P., Majorov A.G. Spektral'nye harakteristiki integral'nogo operatora vnutrennej zadachi jelektrodinamiki dlja jellipticheskoj ramochnoj struktury. Fizika volnovyh processov i radiotehnicheskie sistemy. 2023. T. 26. № 1. S. 58–69. DOI: 10.18469/1810-3189.2023.26.1.58-69 (in Russian).
  19. Tabakov D.P., Majorov A.G., Valiullin R.M., et al. Spectral characteristics of the integral operator of the internal problem of electrodynamics for cylindrical spiral structure. Lobachevskii J. Math. 2023. № 44. Р. 4079–4091. DOI: 10.1134/S199508022309041X.
  20. Tabakov D.P., Al'-Nozajli B.M.A. Reshenie vnutrennej zadachi dlja konechnoj reguljarnoj dvumernoj reshetki spiral'nyh jelementov, vozbuzhdaemoj ploskoj jelektromagnitnoj volnoj. Fizika volnovyh processov i radiotehnicheskie sistemy. 2024. T. 27. № 3. S. 17–33. DOI: 10.18469/1810-3189.2024.27.3.17-33 (in Russian).
  21. Tabakov D.P., Majorov A.G. Approksimacija reshenija vnutrennej jelektrodinamicheskoj zadachi dlja tonkogo trubchatogo vibratora metodom sobstvennyh funkcij. Trudy uchebnyh zavedenij svjazi. 2019. T. 5. № 4. S. 36–42. DOI: 10.31854/1813-324X-2019-5-4-58-64 (in Russian).
  22. Tabakov D.P., Majorov A.G. Approksimacija reshenija vnutrennej zadachi jelektrodinamiki metodom sobstvennyh funkcij. Pis'ma v Zhurnal tehnicheskoj fiziki. 2023. T. 49. № 9. S. 26-28. DOI: 10.21883/PJTF.2023.09.55320.19531 (in Russian).
  23. Harrington R., Mautz J. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag. 1971. V. 19. P. 622–628. DOI: 10.1109/TAP.1971.1139999.
Date of receipt: 05.06.2025
Approved after review: 10.06.2025
Accepted for publication: 22.07.2025