I.A. Kustkov1
1 JSC “CNIRTI named after academician A.I. Berg” (Moscow, Russia)
1 kustkovvana@gmail.com
Problem statement. High-precision coordinate determination is a crucial factor in monitoring the electronic environment and the ability to issue target designations to executive systems. In this regard, the estimation of the error of the data obtained will determine the success of the operations performed.
Goal. Development of a mathematical model for estimating the error in determining the coordinates of terrestrial radio sources using the basic correlation method.
Results. Mathematical modeling was carried out and a quantitative estimate of the error in determining coordinates under various input conditions was obtained. The influence of the input parameters of the coordinate determination function on the final error values is shown. The specific minimum distance between the posts and the required number of measurements have been determined to achieve the specified error.
Practical significance. The results of the study make it possible to reasonably choose the configuration of the complex and determine the required number of measurements to achieve a given accuracy of determination.
Kustkov I.A. A model for estimating the error in determining the coordinates of terrestrial radio sources using the basic correlation method. Radiotekhnika. 2025. V. 89. № 5. P. 45−54. DOI: https://doi.org/10.18127/j00338486-202505-05 (In Russian)
- Careem M., Gomez J., Saha D., Dutta A. UAV-based localization for distributed tactical wireless networks using archimedean spiral. IEEE Transactions on Mobile Computing. 2022. V. 21. P. 2566–2580.
- Cook H.A., Kahn M.T.E., Balyan V. Radio direction-finding techniques for an unmanned aerial vehicle. Lecture Notes in Networks and Systems. 2020. V. 106. P. 2566–2580.
- Fokin G. Passive Geolocation with unmanned aerial vehicles using AOA measurement processing. Transition no Advanced Communication Technology (TACT). 2019. V. 8. № 2. P. 1193–1197.
- Ma F., Guo F., Yang L. Low-complexity TDOA and FDOA localization: a compromise between two-step and DPD methods. Digital Signal Processing. 2020. V. 96. P. 10–26.
- Vankayalapati N., Kay S., Ding Q. TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound. IEEE Transactions on Aerospace and Electronic Systems. 2014. V. 50. № 50. P. 1616–1635
- Kustkov I.A., Tektinov A.O., Volkov Je.V. Razrabotka vozdushnogo kompleksa opredelenija koordinat nazemnyh istochnikov radioizluchenija bazovo-korreljacionnym metodom. Vestnik RAEN. 2024. № 3. S. 66-70 (in Russian).
- MI 2083-90. Izmerenija kosvennye. Opredelenie rezul'tatov izmerenij i ocenivanie ih pogreshnostej: vveden 01.01.92. M.: Izd-vo standartov. 1991. S. 6-7 (in Russian).
- GOST R 8.736-2011. Izmerenija prjamye mnogokratnye. Metody obrabotki rezul'tatov izmerenija. Osnovnye polozhenija: utverzhden i vveden v dejstvie Prikazom Federal'nogo agentstva po tehnicheskomu regulirovaniju i metrologii ot 13 dekabrja 2011 g. № 1045-st. M.: Standartinform. 2013. S. 3–4 (in Russian).
- GOST R ISO 5725-1-2002. Tochnost' (pravil'nost' i pricezionnost') metodov i rezul'tatov izmerenij. Osnovnye polozhenija i opredelenija: utverzhden i vveden v dejstvie Postanovleniem Gosstandarta Rossii ot 23 aprelja 2002 g. № 161-st. M.: Izd-vo standartov. 2002. S. 3–6 (in Russian).
- RMG 29-2013. Metrologija. Osnovnye terminy i opredelenija: vveden v dejstvie prikazom po tehnicheskomu regulirovaniju i metrologii ot 5 dekabrja 2013 g. №2166-st. M.: Standartinform. 2013. 3-4 s. (in Russian).

