D.A. Borisov1, S.P. Skobelev2
1,2 Moscow Institute of Physics and Technology (National Research University) (Dolgoprudny, Russia)
2 PJSC “Radiofizika” (Moscow, Russia)
1 bd240897@yandex.ru; 2 s.p.skobelev@mail.ru
A self-sufficient method is proposed for solution of the problem of electromagnetic wave scattering by homogeneous magneto-dielectric bodies in general 3D case. The method includes approximation of the specified body by a polyhedron; the use of combined auxiliary electric and magnetic surface currents uniformly distributed over each facet; and satisfaction of the continuity conditions for tangential components of the electric and magnetic field strength in the collocation points located in the centroid of each facet. As a result, the problem is reduced to a system of linear algebraic equations. The general algorithm includes a special case of wave scattering by a perfectly conducting body. The auxiliary currents determined as a result of solution of the algebraic system are used for calculation of the radar cross-section of the body, as well as for calculation of the tangential components of the electric and magnetic field strength used for determining equivalent (not auxiliary) surface electric and magnetic currents. The self-sufficiency of the method is further ensured by checking the accuracy of fulfilling another system of linear algebraic equations obtained on the basis of the theorem of equivalence. A number of numerical results characterizing the effectiveness of the method proposed in the paper are presented and discussed.
Borisov D.A., Skobelev S.P. A self-sufficient method of combined auxiliary surface currents in 3D problems of electromagnetic scattering by homogeneous magneto-dielectric bodies. Radiotekhnika. 2025. V. 89. № 4. P. 26−43. DOI: https://doi.org/10.18127/j00338486-202504-03 (In Russian)
- Kahnert F.M. Numerical methods in electromagnetic scattering theory. Journal of Quantitative Spectroscopy & Radiative Transfer. 2003. V. 79-80. P. 775-824.
- Dmitriev V.I., Zaharov E.V. Integral'nye uravnenija v kraevyh zadachah jelektrodinamiki. M.: Izd-vo MGU. 1987 (in Russian).
- Harrington R.F. Boundary integral formulations for homogeneous material bodies. Journal of Electromagnetic Waves and Applications. 1989. V. 3. № 1. P. 1-15.
- Chew W.C., Tong M.S., Hu B. Integral equation methods for electromagnetic and elastic waves. Morgan & Claypool. 2009.
- Dautov O.Sh., Dymskij V.N. K teorii difrakcii na odnorodnyh telah. Izvestija vuzov. Ser. Radiofizika. 1975. T. 18. № 5. S. 735-745 (in Russian).
- Marx E. Integral equation for scattering by dielectric. IEEE Transactions on Antennas and Propagation. 1984. V. AP-32. № 2. P. 166-172.
- Glisson A.W. An integral equation for electromagnetic scattering from homogeneous dielectric bodies. IEEE Transactions on Antennas and Propagation 1984. V. AP-32. № 2. P. 173-175.
- Lori F.S.H., Menshov A., Gholami R., Mojolagbe J.B., Okhmatovski V.I. Novel single-source surface integral equation for scattering problems by 3-D dielectric objects. IEEE Transactions on Antennas and Propagation. 2017. V. 66. № 2. P. 797-807.
- Harrington R.F. Field computation by moment methods. New York: Macmillan. 1968.
- Gibson W.C. The method of moments in electromagnetics. 2nd ed. Chapman and Hall/CRC. 2014.
- Malakshinov N.P., Erihov V.G. Ob odnom chislennom metode reshenija zadach difrakcii. Antenny. 1977. Vyp. 25. S. 53-64 (in Russian).
- Popovidi R.S., Cverikmazashvili Z.S. Chislennoe issledovanie zadachi difrakcii modificirovannym metodom neortogonal'nyh rjadov. ZhVMiMF. 1977. T. 17. № 2. S. 384-393 (in Russian).
- Erjomin Ju.A., Il'inskij A.S., Sveshnikov A.G. Metod neortogonal'nyh rjadov v zadachah difrakcii jelektromagnitnyh voln. Doklady akademii nauk SSSR. 1979. T. 247. № 6. S. 1350-1354 (in Russian).
- Dmitrenko A.G., Mukomolov A.I. Ob odnoj modifikacii metoda neortogonal'nyh rjadov dlja reshenija zadach jelektromagnitnogo rassejanija na proizvol'nyh gladkih ideal'no provodjashhih telah. Radiotehnika i jelektronika. 1988. T. 33. № 3. S. 449-454 (in Russian).
- Leviatan Y., Boag A., Boag A. Generalized formulation for electromagnetic scattering from perfectly conducting and homogeneous material bodies – theory and numerical solution. IEEE Transactions on Antennas and Propagation. 1988. V. 36. № 12. P. 1722-1734.
- Erjomin Ju.A., Sveshnikov A.G. Metod diskretnyh istochnikov v zadachah jelektromagnitnoj difrakcii. M.: Izd.-vo MGU. 1992 (in Russian).
- Dmitrenko A.G., Mukomolov A.I. Chislennyj metod reshenija trehmernyh vektornyh zadach rassejanija na trehmernom magnitodijelektricheskom tele proizvol'noj formy. Radiotehnika i jelektronika. 1995. T. 40. № 6. S. 875-880 (in Russian).
- Wriedt Th. (Ed.) Generalized multipole techniques for electromagnetic and light scattering. Amsterdam: Elsevier. 1999.
- Dmitrenko A.G., Pastuhova T.N. Rassejanie jelektromagnitnyh voln na trehmernom magnitodijelektricheskom tele proizvol'noj formy. Izvestija vuzov. Ser. Radiofizika. 2006. T. 49. № 4. S. 348-356 (in Russian).
- Wriedt T., Eremin Yu. (Eds.) The generalized multipole technique for light scattering. Recent developments. Springer. 2018.
- Mautz J.R. A stable integral equation for electromagnetic scattering from homogeneous dielectric bodies. IEEE Transactions on Antennas and Propagation. 1989. V. AP-37. № 8. P. 1070-1071.
- Borisov D.A., Skobelev S.P. Modifikacija metoda integral'nyh uravnenij dlja vspomogatel'nyh poverhnostnyh tokov v zadachah jelektromagnitnogo rassejanija na pronicaemyh cilindrah. Fizicheskie osnovy priborostroenija. 2021. T. 10. № 3(41). S. 105-117 (in Russian).
- Borisov D.A., Skobelev S.P. Self-sufficient algorithm of the method of surface integral equations in the problems of electromagnetic scattering by magneto-dielectric cylinders. Lobachevskii Journal of Mathematics. 2023. V. 44. № 11. P. 4939-4950.
- Sankar A., Tong T.C. Current computation on complex structures by finite element method. Electronics Letters. 1975. V. 11. № 20. P. 481-482.
- Wang J.J.H. Numerical analysis of three-dimensional arbitrarily-shaped conducting scatterers by trilateral surface cell modeling. Radio Science. 1978. V. 13. № 6. P. 947-952.
- Rao S.M., Wilton D.R., Glisson A.W. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on Antennas and Propagation. 1982. V. AP-30. № 3. P. 409-418.
- Wang N., Richmond J., Gilbreath M. Sinusoidal reaction formulation for radiation and scattering from conducting surfaces. IEEE Transactions on Antennas and Propagation. 1975. V. AP-23. № 3. P. 376-382.
- Balanis C.A. Advanced Engineering Electromagnetics. 2nd ed. Wiley. 2012.
- Markov G.T., Sazonov D.M. Antenny. M.: Jenergija. 1975 (in Russian).
- Borisov D.A., Skobelev S.P. A self-sufficient algorithm of the method of auxiliary surface currents in 3D problems of electromagnetic scattering by closed perfectly conducting bodies. Lobachevskii Journal of Mathematics. 2024. V. 45. № 10. P. 4722-4729.
- Markov G.T., Chaplin A.F. Vozbuzhdenie jelektromagnitnyh voln. M.: Radio i svjaz'. 1983 (in Russian).
- Cote M.G., Woodworth M.B., Yaghjian A.D. Scattering from the perfectly conducting cube. IEEE Transactions on Antennas and Propagation. 1988. V. 36. № 9. P. 1321-1329. DOI: 10.1109/8.8612.
- Pelletti C., Bianconi G., Mittra R., Monorchio A., Panayappan K. Numerically efficient method-of-moments formulation valid over a wide frequency band including very low frequencies. IET Microwaves, Antennas & Propagation. 2012. V. 6. Is. 1. P. 46–51. DOI: 10.1049/iet-map.2011.0251.
- Popovic B.D., Notaros B.M. Moment-method analysis of volume dielectric scatterers. Four independent entire-domain solutions: Is entire-domain philosophy a luxury or necessity in the method of moments?. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering. 1996. V. 6. № 6. P. 454-473.
- Kim O.S., Meincke P., Breinbjerg O., Jørgensen E. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions. Radio Science. 2004. V. 39. RS5003. DOI:10.1029/2004RS003041.
- Borisov D.A., Skobelev S.P. Nekotorye osobennosti rassejanija ploskoj jelektromagnitnoj volny na ploskoj na ploskoj magnitodijelektricheskoj plastine. Radiotehnika i jelektronika. 2023. T. 68. № 8. S. 742-750 (in Russian).

