350 rub
Journal Radioengineering №12 for 2025 г.
Article in number:
Application of linear antenna arrays for interference suppression and target direction finding in automobile MIMO radar
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202512-17
UDC: 621.391.1
Authors:

V.Yu. Semenov1

1 Nizhni Nivgorod State University n.a. N.I. Lobachevsky (Nizhni Nivgorod, Russia)

1 vitali.semenov@gmail.com

Abstract:

Formulation of the problem. The problem of spatial processing of signals in virtual receiving channels of the antenna array of a vehicular MIMO (Multiple Input Multiple Output) radar is considered. The virtual antenna array is formed by increasing the antenna resolution in the horizontal plane. Traditional short chirp signals with FMCW modulation are used as probing pulses. The problem of interference suppression in the azimuthal plane is considered. The case is also investigated when two cars fall into the main beam of the antenna array (AA) of the radar, and therefore it is necessary to use azimuth super-resolution methods. In modern vehicles, these options are necessary for collision avoidance systems and driver assistance systems.

Goal. To develop two methods of spatial digital signal processing for narrowband interference suppression and target direction finding using a MIMO autoradio receiver antenna array.

Results. An analytical expression for the received signal under conditions of Doppler frequency shift and short probing chirp pulses in an automobile MIMO radar is obtained. A MIMO radar structure with an encoder on the transmitting side that does not require a decoder on the receiving side is proposed.

Practical significance. The results of numerical modeling of spatial suppression of narrow-band interference by the power vector method are presented. The results of numerical modeling of the accuracy of measuring the azimuth of a moving vehicle by the super-resolution minimal polynomial method are presented. The results of a full-scale experiment are shown, which confirmed the possibility of effective direction finding of two closely located vehicles in the case of a short sample of the input process.

Pages: 160-172
For citation

Semenov V.Yu. Application of linear antenna arrays for interference suppression and target direction finding in automobile MIMO radar. Radiotekhnika. 2025. V. 89. № 12. P. 160−172. DOI: https://doi.org/10.18127/j00338486-202512-17 (In Russian)

References
  1. Benyahia Z., Hefnawi M., Aboulfatah M., Abdelmounim E., Gadi T. Squeeze net-based range, angle, and doppler estimation for automotive MIMO radar systems. International conference on intelligent systems and computer vision (ISCV). 2022. Р. 1-5. DOI: 10.1109/ISCV54655.2022.9806088.
  2. Singh H., Chattopadhyay A. Multi-target range and angle detection for MIMO-FMCW radar with limited antennas. EUSIPCO. 2023. Р. 725-729.
  3. Xi F., Xiang Y., Zhang Z., Chen S., Nehorai A. Joint angle and doppler frequency estimation for MIMO radar with one-bit sampling: a maximum likelihood-based method. IEEE transactions on aerospace and electronic systems. 2020. V. 56. № 6. Р. 4734-4748. DOI: 10.1109/TAES.2020.3000841.
  4. Rao S. MIMO radar. Texas Instruments Radar Application Report SWRA554A. May 2017. Revised July 2018. 13 p.
  5. Richards M. Fundamentals of Radar Signal Processing. 2nd edition. New York. McGraw-Hill. 2014.
  6. Aydogdu C., Carvajal G.K., Eriksson O., Hellsten H., Herbertsson H., Keskin M.F., Nilsson E., Rydstrom M., Vanas K., Wymeersch H. Radar interference mitigation for automated driving. IEEE Signal Processing Magazine. Special Issue on Automous Driving. September 23. 2019. Р. 1-21.
  7. Meinl F. Signal Processing Architectures for Automotive High-Resolution MIMO Radar Systems. Leibniz University Hannover. Ph.D. dissertation. 2020. 191 p.
  8. Lutz S., Ellenrieder D., Walter T., Weigel R. On fast chirp modulations and compressed sensing for automotive radar applications. Proc. 15th Int. Radar Symp. (IRS). Junе 2014. Р. 1–6.
  9. Gantmaher F.R. Teorija matric. M.: Nauka. 1988. 552 s. (in Russian).
  10. Winkler V. Range Doppler detection for automotive FMCW radars. 2007 European Microwave Conference. Munich. 2007. Р. 1445-1448. DOI: 10.1109/EUMC.2007.4405477.
  11. Shi W., Huang J., Chengbing He C. 2D angle and Doppler frequency estimation in MIMO radar. Proceedings of the World Congress on Engineering and Computer Science (WCECS 2011). San Francisco. USA. 2011. V. 1.
  12. Feger R., Wagner C., Schuster S., Scheiblhofer S., Jager H., Stelzer A. A 77-GHz FMCW MIMO Radar based on an SiGe Single-chip transceiver. IEEE Transactions on Microwave Theory and Techniques. May 2009. V. 57. № 5. Р. 1020-1035.
  13. Ermolaev V.T., Semenov V.Ju., Sorokin I.S., Flaksman A.G., Jastrebov A.V. Reguljarizacija vesovogo vektora adaptivnoj antennoj reshetki putem ogranichenija chisla bazisnyh vektorov. Izvestija vuzov. Ser. Radiofizika. 2015. T. 58. № 3. S. 235-243 (in Russian).
  14. Semenov V.Ju. Metod prostranstvennoj obrabotki signalov dlja dvumernoj pelengacii so sverhrazresheniem v radiotelemetricheskom komplekse s antennoj reshetkoj. Izvestija vuzov. Ser. Radiofizika. 2024. T. 67. № 8. S. 708–718 (in Russian).
  15. Ermolaev V.T., Flaksman A.G., Elohin A.V., Kupcov V.V. Metod minimal'nogo mnogochlena dlja ocenki parametrov signalov, prinimaemyh antennoj reshetkoj. Akusticheskij zhurnal. 2018. T. 64. № 1. S. 78-85 (in Russian).
  16. Kobak V.O. Radiolokacionnye otrazhateli. M.: Sovetskoe radio. 1975. 348 s. (in Russian).
Date of receipt: 07.04.2025
Approved after review: 11.04.2025
Accepted for publication: 28.11.2025