350 rub
Journal Radioengineering №7 for 2024 г.
Article in number:
Analysis of two-dimensional planar gratings and metasurfaces in the quasi-static approximation
Type of article: scientific article
DOI: 10.18127/j00338486-202407-25
UDC: 621.396.961
Authors:

V.V. Akhiyarov1

1 JSC «SPC «SRI of Long-Distance Radio Communications» (Moscow, Russia)

1 vakhiyarov@gmail.com

Abstract:

Currently, composite materials based on metal gratings with a period D much smaller than the wavelength l are widely used. With the use of such materials, it is possible to control the amplitude, phase and polarization of an electromagnetic wave, which opens wide possibilities for the creation of new types of antennas, radio-absorbing coatings, etc. This paper considers gratings of metallic strip or patches on the surface of a thin metal-backed dielectric slab to control the phase of the reflected wave. In the quasi-static approximation, the input impedance of such materials can be calculated using simple analytical formulas.

This paper investigates the accuracy of the quasi-static approximation at different angles of incidence of the electromagnetic wave on two-dimensional gratings. Using the equivalent circuits method, analytical expressions for the input impedance of metasurfaces are obtained. The dispersion properties of composite materials “inductive or capacitive grating on the surface of a thin metal-backed dielectric slab” are investigated, and a technique for determining the resonant frequency, which corresponds to the maximum of the input impedance of the metasurface, is presented.

The obtained results show that at any angle of incidence, it is possible to evaluate the condition of the quasi-static approximation applicability for two-dimensional gratings and for metasurfaces based on such gratings. If this condition is satisfied, that simple analytical expressions can be used to calculate the input impedance. The use of these expressions allows us to determine the frequency at which the input impedance reaches its maximum.

It is established that for inductive and capacitive gratings the impedance boundary condition of M.A. Leontovich is equivalent to the averaged boundary condition of M.I. Kontorovich. It is obtained that for grating in free space, quasi-static approximation corresponds to the M.A. Leontovich impedance condition.

The dispersion properties of composite materials “inductive or capacitive grating on a thin metal-backed dielectric slab” are investigated. It is shown that the phase transition of the reflection coefficient through zero occurs at maximum values of the input impedance.

Using the considered method of equivalent circuits, the presented results can be easily generalized to any type of multilayer metasurfaces.

Pages: 143-158
For citation

Akhiyarov V.V. Analysis of two-dimensional planar gratings and metasurfaces in the quasi-static approximation. Radiotekhnika. 2024. V. 88. № 7. P. 143−158. DOI: https://doi.org/10.18127/j00338486-202406-25 (In Russian)

References
  1. Costa F., Monorchio A., Manara G. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Aces Journal. 2014. V. 29. № 12. P. 960-976.
  2. Yuan Xu, Mang He. Design of multilayer frequency-selective surface by equivalent circuit method and basic building blocks. International Journal of Antennas and Propagation. V. 2019. Article ID 9582564. P. 1-13.
  3. MacFarlane G.G. Surface impedance of an infinite wire grid, at oblique angles of incidence. Journal of the IEE. 1946. V. 93.
    № 10. P. 1523-1527.
  4. Kontorovich M.I., Astrahan M.I., Akimov V.P., Fersman G.A. Jelektrodinamika setchatyh struktur. M.: Radio i svjaz'. 1987. 135 s. (in Russian).
  5. Tretyakov S.A. Metasurfaces for general transformations of electromagnetic fields. Philosophical Transactions of the Royal Society A. 2015. № 8. P. 1-10.
  6. Tretyakov S. Analytical modeling in applied electromagnetics. Artech house, inc. 2003. 272 p.
  7. Luukkonen O., Simovki C., Granet G., et al. Simple and Accurate Analytical model of Planar Grids and High-impedance Surfaces Comprising Metal Strips or Patches. IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 6. P. 1625-1632.
  8. Compton R.S., Whitbourn L.B., McPhedran R.C. Strip grating at a dielectric interface and application of Babinet’s principle. Applied optics. 1984. V. 23. № 18. P. 3236-3242.
  9. Senior T.B.A., Volakis J.L. Approximate Boundary Condition in electromagnetics. London: IEE. 1995. 354 p.
  10. Leontovich M.A. Izbrannye trudy. Teoreticheskaja fizika. M.: Nauka. 1985. 432 s. (in Russian).
  11. Ahijarov V.V. Vozmozhnost' ispol'zovanija impedansnyh uslovij na granice razdela svobodnogo prostranstva i iskusstven-nogo materiala. Sb. trudov XXVIII Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». 2022. T. 5. S. 63-70 (in Russian).
  12. Ahijarov V.V. Vychislenie polja, rassejannogo na styke dvuh materialov. Sb. trudov Ross. nauch.-tehnich. obshhestva radiotehniki, jelektroniki i svjazi im. A.S. Popova. Materialy 15-j Mezhdunar. nauch.-tehnich. konf. 2022. S. 74-77 (in Russian).
  13. Vajnshtejn L.A. Jelektromagnitnye volny. Izd. 2-e, pererab. i dop. M.: Radio i svjaz'. 1988. 440 s. (in Russian).
  14. Ahijarov V.V. Analiticheskoe vychislenie vhodnogo impedansa metapoverhnostej na osnove induktivnyh i emkostnyh reshetok. Trudy XVI Mezhdunar. nauch.-tehnich. konf. «Akustoopticheskie i radiolokacionnye metody izmerenij i obrabotki informacii». 2023. S. 67-71 (in Russian).
  15. Bankov S.E. Jekvivalentnye granichnye uslovija dlja izotropnyh reshetok. Radiotehnika i jelektronika. 2018. T. 63. № 4. S. 301-313 (in Russian).
  16. Maljuzhinec G.D. Vozbuzhdenie, otrazhenie i izluchenie poverhnostnyh voln na kline s zadannymi impedansami granej. Doklady AN SSSR. 1958. T. 121. № 3. S. 436-439 (in Russian).
  17. Ahijarov V.V. Difrakcija ploskoj volny na impedansnom i poluprozrachnom jekrane pri E-poljarizacii padajushhego polja. Sb. trudov XXV Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». 2019. T. 4. S. 295-304 (in Russian).
  18. Ahijarov V.V. Vychislenie rassejannyh polej dlja padajushhej i otrazhennoj volny v zadache difrakcii na impedansnom kline. Sb. trudov XXVI Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». 2020. T. 4. S. 370-377 (in Russian).
  19. Ahijarov V.V. Reshenie zadachi difrakcii na kline metodom otrazhenij. Radiotehnika. 2021. T. 85. № 3. S. 16-26. DOI: https://doi.org/10.18127/j00338486-202103-02 (in Russian).
  20. Potapov A.A. Intellektual'nye metapoverhnosti, Fur'eoptika i kriptografija: retrospektivnyj analiz. Sb. trudov XXIX Mezhdunar. nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». T. 3. 2023. S. 322-357 (in Russian).
Date of receipt: 14.02.2024
Approved after review: 19.02.2024
Accepted for publication: 29.04.2024