350 rub
Journal Radioengineering №12 for 2024 г.
Article in number:
Synthesis of an algorithm for processing radar data with adaptation to a typical trajectory of an aircraft based on the scientific and methodological apparatus for reducing the Lagrange problem to an isoperimetric problem
Type of article: scientific article
DOI: 10.18127/j00338486-202412-03
UDC: 62-50+06
Authors:

A.A. Kostoglotov1, A.S. Penkov2

1,2 Rostov State Transport University (Rostov-on-Don, Russia)

1 kostoglotov@me.com; 2 pencha_@mail.ru

Abstract:

The constant growth in the tactical and technical characteristics of modern aircraft creates the need to develop more advanced tracking systems, characterized by increased accuracy and speed. In practice, finding a compromise between these parameters is a very difficult task and requires scientific research to find new approaches to solving this problem related to the analysis of the physical characteristics of objects under observation.

The well-known optimal Kalman filter algorithm does not always have satisfactory accuracy in conditions of maneuvering an observed object, and the use of algorithms based on the interaction of several models for various types of maneuver leads to unacceptably high computational complexity.

One of the approaches to finding a compromise between accuracy and speed is the use of a dynamic motion model in the structure of a quasi-optimal algorithm for processing radar information. To synthesize the model, it is proposed to use the scientific and methodological apparatus of reducing the Lagrange problem to an isoperimetric one. Its key stage is to find conditions for the non-negativity of the asynchronous variation of the extended functional, which is the result of convolution of the accuracy criterion and the action integral. This makes it possible to obtain the necessary conditions for the extremum of the objective functional in the form of a boundary value problem obtained on the basis of reducing the Lagrange problem to an isoperimetric one using the Hamiltonian action integral.

The set of trajectories that are the solution to the boundary value problem determines the structure of the quasi-optimal motion model in terms of differential equations and can be successfully used in the construction of recurrent algorithms for adaptive estimation of aircraft motion parameters when moving along standard trajectories with a computational complexity corresponding to the classical Kalman filter algorithm.

The procedure for synthesizing a discrete processing algorithm in the work is proposed to be carried out using an approximate solution of the vector-matrix differential equation of the motion model based on the Taylor series expansion of the matrix exponential. Under conditions of a quasi-stationary approximation, this method makes it possible to determine the structure of the transition state matrix and the covariance matrix of the disturbance, which determine the quasi-optimal algorithm for processing radar information with adaptation to a typical trajectory.

The paper presents a numerical simulation of the process of estimating the altitude and vertical speed of an aircraft performing a landing approach along a typical descent trajectory. Over the entire trajectory under consideration, the gain of the proposed algorithm relative to the classical Kalman filter is on average 15% in height, 20% in vertical speed, and is achieved by adapting to a typical descent trajectory at equal computational costs.

Pages: 30-40
For citation

Kostoglotov A.A., Penkov A.S. Synthesis of an algorithm for processing radar data with adaptation to a typical trajectory of an aircraft based on the scientific and methodological apparatus for reducing the Lagrange problem to an isoperimetric problem. Radiotekhnika. 2024. V. 88. № 12. P. 30−40. DOI: https://doi.org/10.18127/j00338486-202412-03 (In Russian)

References
  1. Pearson J.B. Basic studies in airborne radar tracking systems : PhD thesis: PhD thesis. University of California at Los Angeles. 1970.
  2. Tordela C., Strano S., Terzo M. An estimator based on a sigma-points Kalman filter for vehicle and tire-road condition monitoring. International journal of mechanics and control. 2023. V. 24. Is. 1. P. 33–42.
  3. Chui C., Chen G. Kalman filter: an elementary approach. Kalman Filter. Real-time application 1987. V. 17. P. 20–32.
  4. Samuel K., Choi J. Design of a tracking filter suitable for 2D motion dynamics of an off-road target. 17th International Conference on control, automation and systems (ICCAS). 2017. P. 379–382.
  5. Коновалов А.А. Основы траекторной обработки радиолокационной информации. Ч. 2. СПб: СПбГЭТУ «ЛЭТИ». 2013. 180 с.
  6. Semerdjiev E., Mihaylova L., Li X.R. Variable- and fixed-structure augmented ZMM algorithms using coordinated turn model. Proceedings of the Third International conference «Information fusion». 2000. V. 1. P. 25–32.
  7. Kostoglotov A.A., Lazarenko S.V. Metod kvazioptimal'nogo sinteza zakonov upravlenija na osnove redukcii zadachi La-granzha k izoperimetricheskoj zadache s ispol'zovaniem asinhronnogo var'irovanija. Izvestija RAN. Teorija i sistemy upravlenija. 2021. № 6. S. 3–12 (in Russian).
  8. Kostoglotov A.A., Lazarenko S.V., Penkov A.S. Method of synthesis of adaptive estimation algorithms based on the condition of generalized power maximum and the shaping filter method. Advances in Automation IV. Proceedings of the International Russian Automation Conference (RusAutoCon). Sochi. Russian Federation: IEEE. 2022. P. 564–569.
  9. Kostoglotov A.A., Pen'kov A.S., Lazarenko S.V. Metod sinteza adaptivnyh algoritmov ocenki parametrov dinamicheskih sistem na osnove principa dekompozicii i metodologii ob’edinennogo principa maksimuma:. Izvestija vuzov. Severo-Kavkazskij region. Ser. Estestvennye nauki. 2020. № 4 (208). S. 22–28 (in Russian). (in Russian).
  10. Lur'e A.I. Analiticheskaja mehanika. M.: GIFML, 1961. 824 s. (in Russian).
  11. Andrashitov D.S., Kostoglotov A.A., Lazarenko S.V., Pen'kov A.S. Metod sinteza algoritmov soprovozhdenija s ispol'zo-vaniem formirujushhego fil'tra i kvazioptimal'nyh zakonov upravlenija manevrirujushhimi ob’ektami. Radiotehnika. 2023. T. 87. № 2. S. 93−104. DOI: https://doi.org/10.18127/j00338486-202302-13 (in Russian).
  12. Galiullin A.S. Obratnye zadachi dinamiki. M.: Nauka. 1981. 143 s. (in Russian).
  13. Kostoglotov A.A., Kuznecov A.A., Lazarenko S.V. Sintez modeli processa s nestacionarnymi vozmushhenijami na osnove maksimuma funkcii obobshhennoj moshhnosti. Matematicheskoe modelirovanie. 2016. T. 28. № 12. S. 133–142 (in Russian).
  14. Kostoglotov A.A., Taran V.N. Optimal'naja fil'tracija sostojanija prostranstvenno-raspredelennyh ob’ektov na osnove metoda reguljarizacii A.N. Tihonova. Materialy mezhrespublikanskoj konf. «Povyshenie jeffektivnosti sredstv obrabotki informacii na baze matematicheskogo i mashinnogo modelirovanija». Tambov. 1993. S. 135 (in Russian).
  15. Novoselov V.S. Variacionnye metody v mehanike. Leningrad: Izd-vo Leningradskogo universiteta. 1966. 72 s. (in Russian).
  16. Ahiezer N.I. Lekcii po variacionnomu ischisleniju. M.: Gostehizdat. 1955. 248 s. (in Russian).
  17. Kostoglotov A. Solution of Fuller’s problem on the basis of the joint Pontryagin-Hamilton-Ostrogradskii principle. Automatic Control and Computer Sciences. 2007. V. 41. P. 179–187.
  18. Kostoglotov A.A. et al. Analysis of the possibility of intellectualization of algorithms for estimating the parameters of dynamic systems based on adaptive model of motion. Proceedings of the Fifth International Scientific Conference «Intelligent Information Technologies for Industry» (IITI’21). 2022. V. 330 LNNS. P. 589–600.
  19. Kostoglotov A.A., Kostoglotov A.I., Lazarenko S.V. Ob’edinennyj princip maksimuma v informacionnyh tehnologijah analiza i sinteza. Monografija. Rostov-na-Donu: Juzhno-Rossijskij gos. universitet jekonomiki i servisa. 2010. 165 s. (in Russian).
  20. Chernous'ko F.L., Anan'evskij I.M., Reshmin S.A. Metody upravlenija nelinejnymi mehanicheskimi sistemami. M.: Fizmatlit. 2006. 328 s. (in Russian).
  21. Kostoglotov A.A., Pen'kov A.S., Lazarenko S.V. Strukturno-parametricheskij sintez fil'tra soprovozhdenija na baze dekompozicii po celevomu funkcionalu s adaptaciej k vozmushhenijam traektorii. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2021. T. 19. № 2. S. 14–25 (in Russian).
  22. Pjatnickij E.S. Princip dekompozicii v upravlenii mehanicheskimi sistemam. Doklady AN SSSR. 1988. T. 300. № 2. S. 300–303 (in Russian).
  23. Jarlykov M.S., Mironov M.A. Markovskaja teorija ocenivanija sluchajnyh processov. M.: Radio i svjaz'. 1993. 464 s. (in Russian).
  24. Sejdzh Je.P., Mels Dzh. Teorija ocenivanija i ee primenenie v svjazi i upravlenii. M.: Svjaz'. 1976. 496 s. (in Russian).
  25. Sejdzh Je.P., Melsa Dzh.L. Identifikacija sistem upravlenija. M.: Nauka. 1974. 248 s. (in Russian).
  26. Korn G., Korn T. Spravochnik po matematike (dlja nauchnyh rabotnikov i inzhenerov). M.: Nauka. 1973. 832 s. (in Russian).
  27. Bojarchuk A.K., Golovach G.P. Spravochnoe posobie po vysshej matematike. T. 5: Differencial'nye upravlenija v primerah i zadachah. M.: Jeditornal URSS. 2001. 384 s. (in Russian).
  28. Matveev V.V., Raspopov V.Ja. Osnovy postroenija besplatformennyh inercial'nyh navigacionnyh sistem. SPb: OAO «Koncern «CNII «Jelektropribor». 2009. 280 s. (in Russian).
  29. Kulifeev Ju.B., Afanas'ev Ju.N. Algoritm avtomaticheskoj posadki samoleta. Trudy MAI. 2012. № 62. S. 10 (in Russian).
Date of receipt: 23.09.2024
Approved after review: 08.10.2024
Accepted for publication: 25.11.2024