A.V. Kvasnov1, V.B. Polyakov2
1 St. Petersburg Federal Research Center of the Russian Academy of Sciences (St. Petersburg, Russia)
2 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)
1 AntonKV@mail.ru; 2 vadim7702@yandex.ru
The article deal with the implementation of the convergence of two unmanned aerial vehicles based on the estimation of the metric in Lebesgue space. The upper bound of the scalar product can be calculated for two sets, which determines as a criterion for their stochastic dependence. The paper shows that the Mahalanobis distance is optimal criterion, since it provides an independent scale-invariant estimate of the distance between objects. The simulation of the approach was carried out for active phased array with a maximum range 8000 m. Radar cross section was chosen no more than 1.6 m2. The distribution of position errors was assumed according to the normal law. The results demonstrated the advantage of the Mahalanobis distance in comparison with other criterions in space (Chebyshev distance, distance of «city blocks»).
Kvasnov A.V., Polyakov V.B. The criteria for the convergence of two unmanned aerial vehicles by radars using the Lebesgue measure. Radiotekhnika. 2024. V. 88. № 11. P. 145−155. DOI: https://doi.org/10.18127/j00338486-202411-18 (In Russian)
- Yu Rong, Richard M. Gutierrez, Kumar Vijay Mishra, Daniel W. Bliss. Noncontact vital sign detection with UAV-borne radars. An Overview of Recent Advances. IEEE Vehicular technology magazine. September 2021. Р. 118-128.
- Philipp Hügler, Timo Grebner, Christina Knill, Christian Waldschmidt. UAV-Borne 2-D and 3-D Radar-Based Grid Mapping. IEEE Geoscience and remote sensing letters. 2022. V. 19.
- Ralf Burr, Markus Schartel, Alexander Grathwohl, Winfried Mayer, Thomas Walter, Christian Waldschmidt. UAV-Borne FMCW InSAR for FocusingBuried Objects. IEEE Geoscience and remote sensing letters. 2022. № 19.
- Shuaijia Shao, Weigang Zhu, Yonggang Li. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Radar Detection of Low-Slow-Small UAVs in Complex Environments. 2022. Р. 1153-1157.
- Kvasnov A.V. Ocenka postroenija trassy radiolokacionnoj celi nepodvizhnym luchom AFAR v dal'nej zone nabljudenija. Radiotehnika. 2017. № 2. S. 4-12 (in Russian).
- Kvasnov A.V. Sintez optimal'nogo reguljatora dlja upravlenija dvizheniem bortovoj radiolokacionnoj sistemy pri otslezhivanii sverhzvukovyh celej. Informacionno-izmeritel'nye i upravljajushhie sistemy. 2015. T. 13. № 2. S. 55-62.
- Torvik B., Olsen K.E., Griffiths H.D. Classification of birds and UAVs based on radar polarimetry. IEEE Geoscience and Remote Sensing Letters. September 2016. V. 13. № 9. Р. 1305-1309.
- Ryzhkov A. I., Zrnic D. Observations of insects and birds with a polarimetric radar. IEEE Transaction on Geoscience and Remote Sensing. March 1998. V. 36. № 2. Р. 661-668.
- Kvasnov A. V. Issledovanie informacionnoj polnoty radiolokacionnyh dannyh v zadachah klassifikacii tochechnyh vozdushnyh ob’ektov. Zhurnal radiojelektroniki. 2021. № 11. S. 1-18 (in Russian).
- Kvasnov A. V. Povyshenie informacionnoj polnoty klassifikatora v zadachah distancionnogo zondirovanija vozdushnyh tochechnyh ob’ektov. Datchiki i sistemy. 2022. T. 262. № 3. S. 9-14 (in Russian).
- Ezuma M., Anjinappa C.K., V. Semkin and I. Guvenc. Comparative Analysis of Radar-Cross-Section- Based UAV Recognition Techniques. IEEE Sensors Journal. September 2022. V. 22. № 18. Р. 17932-17949.
- Kvasnov A.V. Ocenka vektora sostojanija giperzvukovogo letatel'nogo apparata na prodol'nom uchastke traektorii. Aviakosmicheskoe priborostroenie. 2014. T. 9. S. 10-18 (in Russian).
- Wei Nie, Zhi-Chao Han, Yi Li, Wei He, Liang-Bo Xie, Xiao-Long Yang, Mu Zhou. UAV Detection and Localization Based on Multi-Dimensional Signal Features. IEEE Sensors Journal. March 2022. V. 22. № 6. Р. 5150-5162.
- Tianyuan Yang, Antonio De Maio, Jibin Zheng, Tao Su, Vincenzo Carotenuto, Augusto Aubry. An Adaptive Radar Signal Processor for UAVs Detection with Super-Resolution Capabilities. IEEE Sensors Journal. September 2021. V. 21. № 18. Р. 20778-20787.
- Tian J., Wang C., Cao J., Wang X. Fully Convolutional Network-Based Fast UAV Detection in Pulse Doppler Radar. IEEE Transactions on Geoscience and Remote Sensing. 2024. V. 62. Р. 1-12.
- Xiaolong Chen, Jian Guan, Guoqing Wang, Hao Ding, Yong Huang. Fast and Refined Processing of Radar Maneuvering Target Based on Hierarchical Detection via Sparse Fractional Representation. IEEE Access. 2019. V. 7. Р. 149878-149889.
- Jing Li, Dong Hye Ye, Mathias Kolsch, Juan P. Wachs, Charles A. Bouman. Fast and Robust UAV to UAV Detection and Tracking From Video. IEEE Transaction on Emerging Topics in computing. July-September 2021. V. 10. № 3. Р. 1519-1531.
- Martins Ezuma, Chethan Kumar Anjinappa, Mark Funderburk, Ismail Guvenc. Radar Cross Section Based Statistical Recognition of UAVs at Microwave Frequencies. IEEE Transactions on aerospace and electronic systems. February 2022. V. 58. № 1. Р. 27-46.
- Vinogradov I.M. Matematicheskaja jenciklopedija. V 5-ti tomah. Izd. 3-e. M.: Sovetskaja jenciklopedija. 1982. 592 s. (in Russian).
- Kostrikin A.I., Manin Ju.I. Linejnaja algebra i geometrija. Izd. 2-e, pererab. M.: Nauka. 1986. 304 s. (in Russian).
- Mark A. Richards, James A. Scheer, Jim Scheer, William A. Holm. Principles of Modern Radar: Basic Principles. 1st ed. Atlanta. Institution of Engineering and Technology. 2010. 962 p.
- Kvasnov A.V., Poljakov V.B. Analiz algoritmov skanirovanija vozdushnogo prostranstva AFAR RLS dlja sokrashhenija vremeni poiska nadvodnyh i ajerodinamicheskih celej. Radiopromyshlennost'. 2016. № 2. S. 40-46 (in Russian).
- Visentin T., Hasch J., Zwick T. 2017 European Radar Conference (EURAD). Polarimetric RCS Measurements of Selected Two-Wheeled Vehicles for Automotive Radar. Nuremberg. 2017. Р. 53-56 (in Russian).