350 rub
Journal Radioengineering №10 for 2024 г.
Article in number:
Initial trajectory parameters in the presence of range-Doppler coupling error
Type of article: scientific article
DOI: 10.18127/j00338486-202410-02
UDC: 621.396.96
Authors:

M.A. Murzova1, V.E. Farber2

1,2 PJSC “Radiofizika” (Moscow, Russia)

2 Moscow Institute of Physics and Technology (National Research University) (Dolgoprudny, Russia)

1 mariya.trofimenko@phystech.edu; 2 vladeffar@mail.ru

Abstract:

This paper focuses on obtaining our initial estimates for a Kalman filter. The Kalman filters are applied to estimate the motion parameters of objects detected by chirp radars. Chirp radars employ linear frequency modulated (LFM) waveforms for object tracking because the range-Doppler coupling allows better tracking accuracy in the range. The issues of initial trajectory parameters as a function of the range-Doppler coupling coefficient are discussed.

Technically significant conditions of the same characteristics of the radar and the objects and equal deviations of the LFM signals in modulus at the moments of probing are used to form several measurements of the detected trajectory. Under the above conditions, there are 4 methods of determining the signs of the range-Doppler coupling coefficients for three measurements. The initial parameters of the trajectory for the second-order filter based on the three measurements are compared with each other at the methods of determining the signs of the range-Doppler coupling coefficients.

The method l = 3 of determining the signs of the range-Doppler coupling coefficients (sign-variable the range-Doppler coupling coefficients) is advantageous because the normalized coordinates estimation variances take the smallest values compared to the other methods.

Pages: 14-32
For citation

Murzova M.A., Farber V.E. Initial trajectory parameters in the presence of range-Doppler coupling error. Radiotekhnika. 2024. V. 88. № 10. P. 14−32. DOI: https://doi.org/10.18127/j00338486-202410-02 (In Russian)

References
  1. Shirman Ja.D., Manzhos V.N. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. M.: Radio i svjaz'. 1981 (in Russian).
  2. Murzova M.A., Farber V.E. Sravnenie sposobov kompensacii skorostnoj oshibki po dal'nosti v algoritmah ocenki dal'nosti i radial'noj skorosti. Radiotehnika. 2019. № 4. S. 5−16 (in Russian).
  3. Murzova M.A. Vybor kojefficientov diffuzii dlja fil'tra Kalmana s kompensaciej skorostnoj oshibki po dal'nosti. Radiotehnika. 2019. № 10. S. 32−42 (in Russian).
  4. Murzova M.A. The Process Noise Model of Kalman Filter for Chirp Radar. IEEE 2019 VIth International Conference on Engineering and Telecommunication. 2019. P. 1–4.
  5. Murzova M.A., Farber V.E. Ocenka vlijanija skorostnoj oshibki na harakteristiki fil'trov 2-go porjadka s rastushhej pamjat'ju. Radiotehnika. 2023. T. 87. № 9. S. 5-23. DOI: https://doi.org/10.18127/j00338486-202309-01 (in Russian).
  6. Murzova M.A., Farber V.E. Ocenka vlijanija skorostnoj oshibki na harakteristiki diffuzionnyh fil'trov 2-go porjadka. Radiotehnika. 2024. T. 88. № 4. S. 5–23. DOI: https://doi.org/10.18127/j00338486-202404-01 (in Russian).
  7. Murzova M.A., Farber. V.E. The Transient Response of αβ-Filter for Tracking with LFM Waveforms. IEEE 2018 Vth International Conference on Engineering and Telecommunication. 2018. P. 118–121.
  8. Murzova M.A., Farber V.E. Shodimost' α-β fil'tra dlja razlichnyh znachenij kojefficientov skorostnogo smeshhenija. Radiotehnika. 2018. № 10. S. 5−17. DOI: 10.18127/j00338486-201810-01 (in Russian).
  9. Murzova M.A., Farber V.E. The α-β Filter for Tracking Maneuvering Objects with LFM Waveforms. 2017 IVth International Conference on Engineering and Telecommunication. IEEE. 2017. P. 104–107.
  10. Murzova M.A., Farber V.E. Vybor kojefficientov sglazhivanija α-β fil'tra po kriteriju minimuma dispersii summarnoj oshibki dlja RLS s LChM-signalom. Radiotehnika. 2018. № 4. S. 5−16 (in Russian).
  11. Murzova M.A. Vybor kojefficientov sglazhivanija α-β fil'tra pri soprovozhdenii manevrirujushhih ob#ektov v RLS s LChM-signalom. Materialy XVI Vseross. molodezhnoj nauch.-tehnich. konf. «Radiolokacija i svjaz' – perspektivnye tehnologii» (Moskva, 6 dekabrja 2018 g.). M: Mir nauki. 2018. S. 136–142 (in Russian).
  12. Jain V., Blair W.D. Filter Design for Steady-State Tracking of Maneuvering Targets with LFM Waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2009. V. 45. № 2. P. 765−773.
  13. Saho K. Steady-State Performance Analysis of Tracking Filter Using LFM Waveforms and Range-Rate Measurement. Mathematical Problems in Engineering. 2018. V. 2018.
  14. Wong W., Blair W.D. Steady-state tracking with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. № 2. P. 701−709.
  15. Trofimenko M.A., Farber V.E. Ocenka vlijanija nalichija skorostnoj oshibki pri izmerenijah dal'nosti v RLS s LChM-signalom na granicy ustojchivosti algoritmov ocenki dal'nosti i radial'noj skorosti. Radiotehnika. 2015. № 10. S. 7−16 (in Russian).
  16. Murzova M.A., Farber V.E. Ocenka granic ustojchivosti kvazioptimal'nyh fil'trov pervogo porjadka s uchetom skorost-noj oshibki po dal'nosti. Radiotehnika. 2020. № 4. S. 5−15. DOI: 10.18127/j00338486-202004(7)-01 (in Russian).
  17. Trofimenko M.A., Farber V.E. Ocenka vlijanija skorostnoj oshibki na ustojchivost' fil'trov vtorogo porjadka. Radiotehnika. 2016. № 4. S. 5−17 (in Russian).
  18. Trofimenko M.A., Farber V.E. Ocenka vlijanija skorostnogo smeshhenija v radiolokacionnyh stancijah s LChM-signalom na granicy ustojchivosti soprovozhdenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Trudy MFTI. 2015. T. 7. № 2. S. 156−166 (in Russian).
  19. Murzova M.A., Farber V.E. Analiz atmosfernogo fil'tra, adaptirovannogo k nalichiju skorostnoj oshibki po dal'nosti. Radiotehnika. 2017. № 4. S. 5−14 (in Russian).
  20. Trofimenko M.A., Farber V.E. Influence of range-Doppler coupling on the tracking stability of reentering space objects. 2015 International Conference on Engineering and Telecommunication. IEEE. 2015. P. 40–44.
  21. Murzova M.A., Farber V.E., Levitan B.A., Topchiev S.A. Height Estimation of Atmospheric Reentry of Vehicle Tracked with LFM Waveforms. 2021 International Conference Engineering and Telecommunication (En&T). Dolgoprudny. Russian Federation. 2021. P. 1-4.
  22. Konovalov A.A. Osnovy traektornoj obrabotki radiolokacionnoj informacii. V 2-h chastjah. Ch. 2. SPb: Izd-vo SPbGJeTU «LJeTI». 2014 (in Russian).
  23. Kuz'min S.Z. Osnovy proektirovanija sistem cifrovoj obrabotki radiolokacionnoj informacii. M.: Sovetskoe radio. 1986 (in Russian).
Date of receipt: 02.09.2024
Approved after review: 24.09.2024
Accepted for publication: 30.09.2024