350 rub
Journal Radioengineering №5 for 2023 г.
Article in number:
Theorems on the representation of the integral of a periodic function with finite Fourier spectrum as a finite sum
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202305-00
UDC: 621.396
Authors:

M.P. Slichenko

JSC «Concern «Sozvezdie» (Voronezh, Russia)

Abstract:

Periodic functions describe phenomena of various nature and are used in various fields of science and technology. In practice, the problem of restoring such periodic functions from their discrete non-equidistant samples is widespread, especially when processing the results of measurements of such functions. However, the existing approach to interpolation by non-equidistant Kotelnikov series leads to errors due to the truncation of the infinite series. This error can be eliminated and the accuracy of interpolation can be improved by modifying the Kotelnikov series based on the periodicity of the original function. Along with the analytical representation of the original function and its derivative, in many scientific problems it is required to calculate the integral of a function given by a discrete set of samples.

Theorems on the representation of the integral of a periodic function with a finite Fourier spectrum as a finite sum for functions of one and several variables are formulated in this paper. Based on the modified Kotelnikov series, theorems are formulated on the representation of the integral of a periodic function with a finite Fourier spectrum as a finite sum. In contrast to the use of an interpolation series with a kernel in the form of spectra of atomic functions, such a representation does not require oversampling of the original function, and also makes it possible to increase the integration accuracy by zeroing the truncation error.

The results are generalized to the general case of integrating a complex function of several variables, when the integrand is factorized with a periodic factor having a finite spectrum.

The formulated theorems can find practical application in many fields of science and technology, including radiophysics, electrodynamics, antenna theory, oscillation theory, optics, holography and radio astronomy, in solving problems of mathematical physics, digital signal and image processing. The application of these theorems in electrodynamics and antenna theory will improve the accuracy of calculating the characteristics of the electromagnetic radiation field based on the measurement results. In particular, the theorems make it possible to express the directivity of an antenna in terms of readings of its radiation pattern. The results have a rather high potential for application in modern computer-aided design systems in the numerical solution of electrodynamic simulation
problems.

Pages: 134-142
For citation

Slichenko M.P. Theorems on the representation of the integral of a periodic function with finite Fourier spectrum as a finite sum.
Radiotekhnika. 2023. V. 87. № 5. P. 134−142. DOI: https://doi.org/10.18127/j00338486-202305-14 (In Russian)

References
  1. Bahrah L.D., Benenson L.S., Zelkin E.G. i dr. Spravochnik po antennoj tehnike. T. 1. Pod red. Ja.N. Fel'da, E.G. Zelkina. M.: IPRZhR. 1997. 256 s. (In Russian).
  2. Shifrin Ja.S. Voprosy statisticheskoj teorii antenn. M.: Sovetskoe radio. 1970. 384 s. (In Russian).
  3. Landau L.D., Lifshic E.M. Teoreticheskaja fizika. V 10 tomah. T. VIII. Jelektrodinamika sploshnyh sred. M.: Fizmatlit. 2019. 656 c. (In Russian).
  4. Artjomov M. L., Borisov V.I., Makovij V.A., Slichenko M.P. Avtomatizirovannye sistemy upravlenija, radiosvjazi i radiojelektronnoj bor'by. Osnovy teorii i principy postroenija. Pod red. M.L. Artemova. M.: Radiotehnika. 2021. 556 s. (In Russian).
  5. Artjomov M.L., Afanas'ev O.V., Slichenko M.P. Obnaruzhenie i pelengovanie istochnikov radioizluchenij v ramkah teorii statisticheskoj radiotehniki. Radiotehnika. 2016. № 5. S. 4-18 (In Russian).
  6. Artjomov M.L., Afanas'ev O.V., Slichenko M.P. Metody statisticheskoj radiotehniki v sovremennom reshenii zadach radiomonitoringa. Antenny. 2016. № 6. S. 55-62 (In Russian).
  7. Artjomov M.L., Slichenko M.P. Sovremennyj podhod k razvitiju metodov pelengovanija radiovoln istochnikov radioizluchenija. Antenny. 2018. № 5. S. 31-37 (In Russian).
  8. Dmitriev I.S., Slichenko M.P. Maksimal'no pravdopodobnoe obnaruzhenie i ocenivanie napravlenija prihoda i amplitudy naprjazhennosti radiovolny s pomoshh'ju mnogokanal'nogo radiopelengatora s antennoj sistemoj proizvol'noj konfiguracii. Antenny. 2011. № 5. S. 59-64 (In Russian).
  9. Dmitriev I.S., Slichenko M.P. Predstavlenie periodicheskih funkcij s finitnym spektrom Fur'e modificirovannym rjadom Kotel'nikova. Radiotehnika i jelektronika. 2015. T. 60. № 5. S. 529-534 (In Russian).
  10. Slichenko M.P. Predstavlenie mnogomernyh periodicheskih funkcij v vide konechnoj vzveshennoj summy otschetnyh znachenij. Radiotehnika i jelektronika. 2014. T. 59. № 10. S. 1042-1049 (In Russian).
  11. Dmitriev I.S., Slichenko M.P. Osobennosti interpoljacii 2π-periodicheskih funkcij s finitnym spektrom Fur'e na osnove teoremy otschetov. Zhurnal radiojelektroniki RAN. 2014. №1 (In Russian).
  12. Svidetel'stvo o gosudarstvennoj registracii programmy dlja JeVM № 2022663188 ot 12.07.2022. Programma rascheta znachenij diagrammy napravlennosti antenny s pomoshh'ju modificirovannogo jekvidistantnogo rjada Kotel'nikova. Zavalishina O.N., Slichenko M.P. (In Russian).
  13. Svidetel'stvo o gosudarstvennoj registracii programmy dlja JeVM № 2022663759 ot 19.07.2022. Programma rascheta znachenij pervoj proizvodnoj azimutal'noj diagrammy napravlennosti antenny s pomoshh'ju modificirovannogo jekvidistantnogo rjada Kotel'nikova. Artemov M.L., Afanas'ev O.V., Il'in M.Ju., Zavalishina O.N. (In Russian).
  14. Svidetel'stvo o gosudarstvennoj registracii programmy dlja JeVM № 2022663088 ot 11.07.2022. Programma rascheta znachenij azimutal'noj diagrammy napravlennosti antenny s pomoshh'ju modificirovannogo nejekvidistantnogo rjada Kotel'nikova. Artemov M.L., Afanas'ev O.V., Zavalishina O.N., Slichenko M.P. (In Russian).
  15. Zelkin E.G., Kravchenko V.F., Gusevskij V.I. Konstruktivnye metody approksimacii v teorii antenn. M.: Sajns-Press. 2005. 512 s. (In Russian).
  16. Kravchenko V.F., Rvachev V.L. Algebra logiki, atomarnye funkcii i vejvlety v fizicheskih prilozhenijah. M.: Fizmatlit. 2006. 412 s. (In Russian).
  17. Kravchenko V.F. Lekcii po teorii atomarnyh funkcij i nekotorym ih prilozhenijam. M.: Radiotehnika. 2003. 512 s. (In Russian).
  18. Weideman J.A.C. Numerical integration of periodic functions. The mathematical association of America. Monthly 109 January 2002. P. 21-36 (In Russian).
  19. Dzherri. A. Dzh. Teorema otschetov Shennona, ejo razlichnye obobshhenija i prilozhenija. Obzor. TIIJeR. TIIJeR. 1977. T. 65. № 11. S. 53-89 (In Russian).
Date of receipt: 28.02.2023
Approved after review: 03.03.2023
Accepted for publication: 30.03.2023