B.A. Levitan1, M.A. Murzova2, S.A. Topchiev3, V.E. Farber4
1-4 PJSC Radiofizika (Moscow, Russia)
1,4 Moscow Institute of Physics and Technology (National Research University) (Dolgoprudny, Russia)
1 Moscow Aviation Institute (National Research University) (Moscow, Russia)
A sustainable tracking of space objects could be divided onto two sub trajectories: above atmosphere and “through” the atmosphere. These space objects are detected by chirp radar. Usage of linear frequency modulated signals results in so-called range-Doppler coupling, which yields a displacement of measured position from a true range of moving space objects. In this work trajectory of the above atmospheric flight is considered with a polynomial model where radial distance and velocity are detected and used in the filtering processes. In the above atmosphere part of trajectory a high order coefficients are defined by equations of motion of the space object. While on the atmosphere part of tajectory a ballistic coefficient or radial acceleration is included into estimated parameters. The estimations of range and velocity of the space object obtained by above-atmospheric filter are used to determine an initial condition for the atmospheric filter. Since the filtering algorithm becomes more complicated, it is necessary to determine a criterion of re-entering into the atmosphere. A transition to object tracking in the atmosphere happens at some height if a residual of the above-atmospheric filter exceeds the standart deviation of the estimate multiplied by the fraction coefficient. The residual of the above-atmospheric filter consists of coordinates describing the atmospheric component of motion. The atmospheric component of range is used in the criterion. Here, it is shown that a more accurate determination of the analytical height is obtained by reducing the estimate variance of the atmospheric range component due to the range-Doppler coupling coefficient. Also this theoretical criterion of reentering the atmosphere of space objects is verified by simulation.
Levitan B.A., Murzova M.A., Topchiev S.A., Farber V.E. Analysis of aerodynamic drag influence on the tracking algorithms for re-entering space objects in chirp radar. Radiotekhnika. 2023. V. 87. № 3. P. 17−30. DOI: https://doi.org/10.18127/j00338486-202303-02 (In Russian)
- Gricenko N.S., Kirichenko A.A., Kolomejceva T.A., Loginov V.P., Tihomirova I.G. Ocenivanie parametrov dvizhenija manevrirujushhih ob’ektov. Zarubezhnaja radiojelektronika. 1983. № 4. S. 3-30 (in Russian).
- Kuz'min S.Z. Cifrovaja radiolokacija. Vvedenie v teoriju. Kiev: KVIC. 2000. (in Russian).
- Bakulev P.A., Sychev M.I., Nguen Chong Lyu. Mnogomodel'nyj algoritm soprovozhdenija traektorii manevrirujushhej celi po dannym obzornoj RLS. Radiotehnika. 2004. № 1 (in Russian).
- Farber V.E. Analiz harakteristik algoritmov ocenki jeffektivnosti ajerodinamicheskogo tormozhenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Radiotehnika. 2007. № 10. S. 81–87 (in Russian).
- Shirman Ja.D., Manzhos V.N. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. M.: Radio i svjaz'. 1981 (in Russian).
- Murzova M.A., Farber V.E. Analiz atmosfernogo fil'tra, adaptirovannogo k nalichiju skorostnoj oshibki po dal'nosti. Radiotehnika. 2017. № 4. S. 5–14 (in Russian).
- Farber V.E. Analiz harakteristik algoritmov opredelenija parametrov dvizhenija kosmicheskih apparatov po informacii radiolokacionnyh sredstv, ispol'zujushhih zondirujushhie signaly s linejnoj chastotnoj moduljaciej. Kosmicheskie issledovanija. 1995. T. 33. № 1. S. 31−35 (in Russian).
- Trofimenko M.A., Farber V.E. Ocenka vlijanija skorostnogo smeshhenija v radiolokacionnyh stancijah s LChM-signalom na granicy ustojchivosti soprovozhdenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Trudy Moskovskogo fiziko-tehnicheskogo instituta. 2015. T. 7. № 2(26). S. 156-166 (in Russian).
- Solov'ev G.K., Tolkachev A.A., Farber V.E. Ob ispol'zovanii LChM-signala dlja otstrojki jeho-signala plazmennogo sleda ot jeho-signala soprovozhdaemogo ob#ekta. Radiotehnika. 2006. № 4. S. 51−52 (in Russian).
- Murzova M.A., Farber V.E. Sravnenie sposobov kompensacii skorostnoj oshibki po dal'nosti v algoritmah ocenki dal'nosti i radial'noj skorosti. Radiotehnika. 2019. № 4. S. 5−18 (in Russian).
- Baranovskij I.P., Farber V.E. Issledovanie algoritma ocenki jeffektivnosti ajerodinamicheskogo tormozhenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Radiolokacija i svjaz'. Sb.k trudov XVIII Vseross. molodezhnoj nauch.-tehnich. konf. Moskva. 2021. S. 12-18 (in Russian).
- Farber V.E. Analiz oshibok kvantovanija v algoritmah opredelenija nachala ajerodinamicheskogo tormozhenija vhodjashhih v atmosferu kosmicheskih ob‘ektov. Deponirovannaja rukopis' № 43-V2016 16.03.2016. S. 1-16 (in Russian).
- Livshic N.A., Farber V.E. Chislovye harakteristiki oshibok kvantovanija po urovnju pri okruglenii s ispol'zovaniem korrektirujushhih signalov. Avtomatika i telemehanika. 1975. № 11. C. 52-58 (in Russian).
- Livshic N.A., Farber V.E. Ob oshibkah amplitudnogo kvantovanija pri okruglenii s ispol'zovaniem diskretnogo po urovnju stohasticheskogo korrektirujushhego signala. Avtomatika i telemehanika. 1977. № 6. S. 38-47 (in Russian).
- Livshic N.A., Farber V.E. Sravnitel'noe issledovanie chislovyh harakteristik oshibok scheta CVU pri razlichnyh modifikacijah sposoba okruglenija do blizhajshego celogo. Voprosy radiojelektroniki. Ser. JeVT. Vyp. 6. 1977. S. 125-137 (in Russian).
- Levitan B.A., Murzova M.A., Topchiev S.A., Farber V.E. Vlijanie skorostnoj oshibki v izmerenijah dal'nosti RLS s LChM-signalom na ocenku vysoty obnaruzhenija nachala tormozhenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Inzhiniring i telekommunikacii-En&T 2021. Sb. tezisov VIII Mezhdunar. konf. M.-Dolgoprudnyj. C. 47-52 (in Russian).
- Farber V.E. Osnovy traektornoj obrabotki radiolokacionnoj informacii v mnogokanal'nyh RLS: Ucheb. posobie. M.: MFTI. 2005 (in Russian).
- Mehra R.K. Sravnenie neskol'kih nelinejnyh fil'trov dlja sistemy slezhenija za vhodjashhimi v atmosferu letatel'nymi apparatami.Voprosy raketnoj tehniki. 1973. №1. S. 3-23 (in Russian).
- Wong W., Blair W.D. Steady-state tracking with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. №. 2. P. 701−709.