350 rub
Journal Radioengineering №3 for 2023 г.
Article in number:
Analysis of aerodynamic drag influence on the tracking algorithms for re-entering space objects in chirp radar
Type of article: scientific article
DOI: https://doi.org/10.18127/j00338486-202303-02
UDC: 621.396.96
Authors:

B.A. Levitan1, M.A. Murzova2, S.A. Topchiev3, V.E. Farber4

1-4 PJSC Radiofizika (Moscow, Russia)

1,4 Moscow Institute of Physics and Technology (National Research University) (Dolgoprudny, Russia)

1 Moscow Aviation Institute (National Research University) (Moscow, Russia)

Abstract:

A sustainable tracking of space objects could be divided onto two sub trajectories: above atmosphere and “through” the atmosphere. These space objects are detected by chirp radar. Usage of linear frequency modulated signals results in so-called range-Doppler coupling, which yields a displacement of measured position from a true range of moving space objects. In this work trajectory of the above atmospheric flight is considered with a polynomial model where radial distance and velocity are detected and used in the filtering processes. In the above atmosphere part of trajectory a high order coefficients are defined by equations of motion of the space object. While on the atmosphere part of tajectory a ballistic coefficient or radial acceleration is included into estimated parameters. The estimations of range and velocity of the space object obtained by above-atmospheric filter are used to determine an initial condition for the atmospheric filter. Since the filtering algorithm becomes more complicated, it is necessary to determine a criterion of re-entering into the atmosphere. A transition to object tracking in the atmosphere happens at some height if a residual of the above-atmospheric filter exceeds the standart deviation of the estimate multiplied by the fraction coefficient. The residual of the above-atmospheric filter consists of coordinates describing the atmospheric component of motion. The atmospheric component of range is used in the criterion. Here, it is shown that a more accurate determination of the analytical height is obtained by reducing the estimate variance of the atmospheric range component due to the range-Doppler coupling coefficient. Also this theoretical criterion of reentering the atmosphere of space objects is verified by simulation.

Pages: 17-30
For citation

Levitan B.A., Murzova M.A., Topchiev S.A., Farber V.E. Analysis of aerodynamic drag influence on the tracking algorithms for re-entering space objects in chirp radar. Radiotekhnika. 2023. V. 87. № 3. P. 17−30. DOI: https://doi.org/10.18127/j00338486-202303-02 (In Russian)

References
  1. Gricenko N.S., Kirichenko A.A., Kolomejceva T.A., Loginov V.P., Tihomirova I.G. Ocenivanie parametrov dvizhenija manevrirujushhih ob’ektov. Zarubezhnaja radiojelektronika. 1983. № 4. S. 3-30 (in Russian).
  2. Kuz'min S.Z. Cifrovaja radiolokacija. Vvedenie v teoriju. Kiev: KVIC. 2000. (in Russian).
  3. Bakulev P.A., Sychev M.I., Nguen Chong Lyu. Mnogomodel'nyj algoritm soprovozhdenija traektorii manevrirujushhej celi po dannym obzornoj RLS. Radiotehnika. 2004. № 1 (in Russian).
  4. Farber V.E. Analiz harakteristik algoritmov ocenki jeffektivnosti ajerodinamicheskogo tormozhenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Radiotehnika. 2007. № 10. S. 81–87 (in Russian).
  5. Shirman Ja.D., Manzhos V.N. Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh. M.: Radio i svjaz'. 1981 (in Russian).
  6. Murzova M.A., Farber V.E. Analiz atmosfernogo fil'tra, adaptirovannogo k nalichiju skorostnoj oshibki po dal'nosti. Radiotehnika. 2017. № 4. S. 5–14 (in Russian).
  7. Farber V.E. Analiz harakteristik algoritmov opredelenija parametrov dvizhenija kosmicheskih apparatov po informacii radiolokacionnyh sredstv, ispol'zujushhih zondirujushhie signaly s linejnoj chastotnoj moduljaciej. Kosmicheskie issledovanija. 1995. T. 33. № 1. S. 31−35 (in Russian).
  8. Trofimenko M.A., Farber V.E. Ocenka vlijanija skorostnogo smeshhenija v radiolokacionnyh stancijah s LChM-signalom na granicy ustojchivosti soprovozhdenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Trudy Moskovskogo fiziko-tehnicheskogo instituta.  2015. T. 7. № 2(26).  S. 156-166 (in Russian).
  9. Solov'ev G.K., Tolkachev A.A., Farber V.E. Ob ispol'zovanii LChM-signala dlja otstrojki jeho-signala plazmennogo sleda ot jeho-signala soprovozhdaemogo ob#ekta. Radiotehnika. 2006. № 4. S. 51−52 (in Russian).
  10. Murzova M.A., Farber V.E. Sravnenie sposobov kompensacii skorostnoj oshibki po dal'nosti v algoritmah ocenki dal'nosti i radial'noj skorosti. Radiotehnika. 2019. № 4. S. 5−18 (in Russian).
  11. Baranovskij I.P., Farber V.E. Issledovanie algoritma ocenki jeffektivnosti ajerodinamicheskogo tormozhenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Radiolokacija i svjaz'. Sb.k trudov XVIII Vseross. molodezhnoj nauch.-tehnich. konf. Moskva. 2021. S. 12-18 (in Russian).
  12. Farber V.E. Analiz oshibok kvantovanija v algoritmah opredelenija nachala ajerodinamicheskogo tormozhenija vhodjashhih v atmosferu kosmicheskih ob‘ektov. Deponirovannaja rukopis' № 43-V2016 16.03.2016. S. 1-16 (in Russian).
  13. Livshic N.A., Farber V.E. Chislovye harakteristiki oshibok kvantovanija po urovnju pri okruglenii s ispol'zovaniem korrektirujushhih signalov. Avtomatika i telemehanika. 1975. № 11. C. 52-58 (in Russian).
  14. Livshic N.A., Farber V.E. Ob oshibkah amplitudnogo kvantovanija pri okruglenii s ispol'zovaniem diskretnogo po urovnju stohasticheskogo korrektirujushhego signala. Avtomatika i telemehanika. 1977. № 6. S. 38-47 (in Russian).
  15. Livshic N.A., Farber V.E. Sravnitel'noe issledovanie chislovyh harakteristik oshibok scheta CVU pri razlichnyh modifikacijah sposoba okruglenija do blizhajshego celogo. Voprosy radiojelektroniki. Ser. JeVT. Vyp. 6. 1977. S. 125-137 (in Russian).
  16. Levitan B.A., Murzova M.A., Topchiev S.A., Farber V.E. Vlijanie skorostnoj oshibki v izmerenijah dal'nosti RLS s LChM-signalom na ocenku vysoty obnaruzhenija nachala tormozhenija vhodjashhih v atmosferu kosmicheskih ob’ektov. Inzhiniring i telekommunikacii-En&T 2021. Sb. tezisov VIII Mezhdunar. konf. M.-Dolgoprudnyj. C. 47-52 (in Russian).
  17. Farber V.E. Osnovy traektornoj obrabotki radiolokacionnoj informacii v mnogokanal'nyh RLS: Ucheb. posobie. M.: MFTI. 2005 (in Russian).
  18. Mehra R.K. Sravnenie neskol'kih nelinejnyh fil'trov dlja sistemy slezhenija za vhodjashhimi v atmosferu letatel'nymi apparatami.Voprosy raketnoj tehniki. 1973. №1. S. 3-23 (in Russian).
  19. Wong W., Blair W.D. Steady-state tracking with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. №. 2. P. 701−709.
Date of receipt: 13.02.2023
Approved after review: 17.02.2023
Accepted for publication: 28.02.2023